Abstract Pain experience increases individuals’ perception and contagion of others’ pain, but whether pain experience affects individuals’ affiliative or antagonistic responses to others’ pain is largely unknown. Additionally, the neural mechanisms underlying how pain experience modulates individuals’ responses to others’ pain remain unclear. In this study, we explored the effects of pain experience on individuals’ responses to others’ pain and the underlying neural mechanisms. By comparing locomotion, social, exploration, stereotyped, and anxiety-like behaviors of mice without any pain experience (naïve observers) and mice with a similar pain experience (experienced observers) when they observed the pain-free demonstrator with intraperitoneal injection of normal saline and the painful demonstrator with intraperitoneal injection of acetic acid, we found that pain experience of the observers led to decreased social avoidance to the painful demonstrator. Through whole-brain c-Fos quantification, we discovered that pain experience altered neuronal activity and enhanced functional connectivity in the mouse brain. The analysis of complex network and graph theory exhibited that functional connectivity networks and activated hub regions were altered by pain experience. Together, these findings reveal that neuronal activity and functional connectivity networks are involved in the modulation of individuals’ responses to others’ pain by pain experience.