Wheel-Rail Force Inversion Via Transfer Learning-Based Residual Lstm Neural Network with Temporal Pattern Attention Mechanism

残余物 机制(生物学) 反演(地质) 学习迁移 计算机科学 人工智能 人工神经网络 地质学 物理 算法 地震学 量子力学 构造学
作者
Guangtong Ma,Taoning Zhu,Yu Ren,Huailong Shi,Yunguang Ye,Piji Feng,SU Zhen-hua,Chunxing Yao
标识
DOI:10.2139/ssrn.4841302
摘要

As urbanization advances, metro vehicles are navigating an increasing number of curves, bringing challenges to both vehicle safety and passenger comfort. There is no doubt that reliable acquisition of wheel-rail force is critical, since it has great significance for the safety and stability of vehicle operation. However, conventional wheel-rail force measurement methods are costly and difficult to measure high-frequency forces accurately. A data-driven approach to inverting the wheel-rail force will overcome the above problems. In this work, a transfer learning-based residual long short-term memory neural network with temporal pattern attention mechanism (TPA-ResLSTM) is proposed to realize real-time monitoring of wheel-rail force even when the dataset lacks adequate features. Firstly, according to the physical relationship between the wheel-rail force and acceleration, the learnable wheel-rail force inversion network model is established. Subsequently, a dynamic model for a B-type metro vehicle is adopted to simulate diverse cases as a virtual source and feed the dataset to the neural network. Afterward, the performance of the model is synthetically validated by the ablation study and field experimental data. Finally, the deep learning model is further improved by the transfer learning network, whose performance is comprehensively evaluated using limited data in small radius curve cases. The results show that the inversion model still has remarkable accuracy, in which the coefficient of determination reaches 0.949, under the case of limited training data. It means the proposed method reduces data demands for the network and provides real-time monitoring and feedback of wheel-rail force, possessing a more realistic sense for the operational safety of trains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助Nebulous采纳,获得10
刚刚
刚刚
whh发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
qingli应助zzt采纳,获得10
2秒前
Lucas应助更上一层楼采纳,获得10
2秒前
2秒前
酷波er应助天天采纳,获得10
3秒前
Flynn完成签到,获得积分10
3秒前
wobisheng完成签到,获得积分10
3秒前
香蕉发夹完成签到,获得积分10
3秒前
5秒前
11111完成签到,获得积分20
5秒前
哭泣青烟完成签到 ,获得积分10
6秒前
靶向噬菌体完成签到,获得积分10
6秒前
Owen应助小黑妞采纳,获得10
6秒前
llllda完成签到,获得积分10
6秒前
典雅路人完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
becky1234567完成签到,获得积分20
7秒前
故里发布了新的文献求助10
7秒前
隐形曼青应助whh采纳,获得10
7秒前
7秒前
8秒前
今后应助qiushui采纳,获得10
8秒前
梁敏完成签到,获得积分10
8秒前
8秒前
诚心初晴发布了新的文献求助10
8秒前
ZZY发布了新的文献求助10
8秒前
李健应助HOHO采纳,获得10
9秒前
zzt完成签到,获得积分10
9秒前
zzzz完成签到,获得积分10
10秒前
天气预报发布了新的文献求助10
10秒前
ZXJ1009完成签到,获得积分10
10秒前
哈哈哈发布了新的文献求助10
10秒前
12秒前
龙仔完成签到,获得积分10
12秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750533
求助须知:如何正确求助?哪些是违规求助? 5464445
关于积分的说明 15367142
捐赠科研通 4889534
什么是DOI,文献DOI怎么找? 2629268
邀请新用户注册赠送积分活动 1577591
关于科研通互助平台的介绍 1534036