Wheel-Rail Force Inversion Via Transfer Learning-Based Residual Lstm Neural Network with Temporal Pattern Attention Mechanism

残余物 机制(生物学) 反演(地质) 学习迁移 计算机科学 人工智能 人工神经网络 地质学 物理 算法 地震学 量子力学 构造学
作者
Guangtong Ma,Taoning Zhu,Yu Ren,Huailong Shi,Yunguang Ye,Piji Feng,SU Zhen-hua,Chunxing Yao
标识
DOI:10.2139/ssrn.4841302
摘要

As urbanization advances, metro vehicles are navigating an increasing number of curves, bringing challenges to both vehicle safety and passenger comfort. There is no doubt that reliable acquisition of wheel-rail force is critical, since it has great significance for the safety and stability of vehicle operation. However, conventional wheel-rail force measurement methods are costly and difficult to measure high-frequency forces accurately. A data-driven approach to inverting the wheel-rail force will overcome the above problems. In this work, a transfer learning-based residual long short-term memory neural network with temporal pattern attention mechanism (TPA-ResLSTM) is proposed to realize real-time monitoring of wheel-rail force even when the dataset lacks adequate features. Firstly, according to the physical relationship between the wheel-rail force and acceleration, the learnable wheel-rail force inversion network model is established. Subsequently, a dynamic model for a B-type metro vehicle is adopted to simulate diverse cases as a virtual source and feed the dataset to the neural network. Afterward, the performance of the model is synthetically validated by the ablation study and field experimental data. Finally, the deep learning model is further improved by the transfer learning network, whose performance is comprehensively evaluated using limited data in small radius curve cases. The results show that the inversion model still has remarkable accuracy, in which the coefficient of determination reaches 0.949, under the case of limited training data. It means the proposed method reduces data demands for the network and provides real-time monitoring and feedback of wheel-rail force, possessing a more realistic sense for the operational safety of trains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傲娇的芫发布了新的文献求助10
1秒前
2秒前
东东发布了新的文献求助10
2秒前
听话的源智完成签到 ,获得积分10
2秒前
kunli完成签到,获得积分10
2秒前
3秒前
CodeCraft应助夏老师采纳,获得10
3秒前
陌上花开笑笑完成签到 ,获得积分10
3秒前
酷波er应助辛勤的飞莲采纳,获得10
3秒前
王王完成签到 ,获得积分10
3秒前
surain发布了新的文献求助10
3秒前
3秒前
jingmishensi发布了新的文献求助10
3秒前
让我顺利毕业完成签到,获得积分10
4秒前
潇洒荷花完成签到 ,获得积分10
4秒前
odisa发布了新的文献求助30
4秒前
科研通AI6应助徐向成采纳,获得10
4秒前
shilong.yang完成签到,获得积分10
5秒前
boen完成签到 ,获得积分10
5秒前
小小小珂卿完成签到,获得积分10
6秒前
6秒前
6秒前
123完成签到 ,获得积分10
6秒前
6秒前
林钟望应助猪猪hero采纳,获得10
6秒前
高大的凝阳完成签到,获得积分10
7秒前
沅芷发布了新的文献求助10
7秒前
7秒前
KKKK完成签到,获得积分10
7秒前
7秒前
wsq关闭了wsq文献求助
7秒前
7秒前
7秒前
包凡之发布了新的文献求助10
7秒前
Jared应助liu采纳,获得10
7秒前
果宝妞妞完成签到,获得积分10
7秒前
8秒前
的能用纸完成签到,获得积分10
9秒前
9秒前
lu2025发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652526
求助须知:如何正确求助?哪些是违规求助? 4787640
关于积分的说明 15060403
捐赠科研通 4811049
什么是DOI,文献DOI怎么找? 2573602
邀请新用户注册赠送积分活动 1529411
关于科研通互助平台的介绍 1488273