Wheel-Rail Force Inversion Via Transfer Learning-Based Residual Lstm Neural Network with Temporal Pattern Attention Mechanism

残余物 机制(生物学) 反演(地质) 学习迁移 计算机科学 人工智能 人工神经网络 地质学 物理 算法 地震学 量子力学 构造学
作者
Guangtong Ma,Taoning Zhu,Yu Ren,Huailong Shi,Yunguang Ye,Piji Feng,SU Zhen-hua,Chunxing Yao
标识
DOI:10.2139/ssrn.4841302
摘要

As urbanization advances, metro vehicles are navigating an increasing number of curves, bringing challenges to both vehicle safety and passenger comfort. There is no doubt that reliable acquisition of wheel-rail force is critical, since it has great significance for the safety and stability of vehicle operation. However, conventional wheel-rail force measurement methods are costly and difficult to measure high-frequency forces accurately. A data-driven approach to inverting the wheel-rail force will overcome the above problems. In this work, a transfer learning-based residual long short-term memory neural network with temporal pattern attention mechanism (TPA-ResLSTM) is proposed to realize real-time monitoring of wheel-rail force even when the dataset lacks adequate features. Firstly, according to the physical relationship between the wheel-rail force and acceleration, the learnable wheel-rail force inversion network model is established. Subsequently, a dynamic model for a B-type metro vehicle is adopted to simulate diverse cases as a virtual source and feed the dataset to the neural network. Afterward, the performance of the model is synthetically validated by the ablation study and field experimental data. Finally, the deep learning model is further improved by the transfer learning network, whose performance is comprehensively evaluated using limited data in small radius curve cases. The results show that the inversion model still has remarkable accuracy, in which the coefficient of determination reaches 0.949, under the case of limited training data. It means the proposed method reduces data demands for the network and provides real-time monitoring and feedback of wheel-rail force, possessing a more realistic sense for the operational safety of trains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wb发布了新的文献求助10
刚刚
mescal发布了新的文献求助10
1秒前
Nzee发布了新的文献求助10
1秒前
LShi完成签到 ,获得积分10
2秒前
2秒前
xinx发布了新的文献求助10
5秒前
6秒前
6秒前
忧虑的翅膀完成签到 ,获得积分10
7秒前
7秒前
猪猪hero发布了新的文献求助10
7秒前
7秒前
9秒前
9秒前
咯咯咯发布了新的文献求助10
9秒前
11秒前
之己发布了新的文献求助10
11秒前
椰子完成签到,获得积分10
12秒前
大羊发布了新的文献求助10
12秒前
12秒前
mm发布了新的文献求助10
13秒前
13秒前
小谷发布了新的文献求助10
14秒前
猪猪hero发布了新的文献求助10
14秒前
FashionBoy应助zhoujiajun采纳,获得10
15秒前
16秒前
Lucas应助lxcy0612采纳,获得10
16秒前
17秒前
jjk完成签到,获得积分10
17秒前
花花完成签到 ,获得积分10
18秒前
赘婿应助章鱼采纳,获得10
18秒前
小小酥被卷了完成签到,获得积分10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
Cope发布了新的文献求助30
21秒前
21秒前
Hans发布了新的文献求助10
21秒前
领导范儿应助mm采纳,获得10
23秒前
luoqin发布了新的文献求助10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480496
求助须知:如何正确求助?哪些是违规求助? 4581690
关于积分的说明 14381729
捐赠科研通 4510321
什么是DOI,文献DOI怎么找? 2471702
邀请新用户注册赠送积分活动 1458148
关于科研通互助平台的介绍 1431837