Wheel-Rail Force Inversion Via Transfer Learning-Based Residual Lstm Neural Network with Temporal Pattern Attention Mechanism

残余物 机制(生物学) 反演(地质) 学习迁移 计算机科学 人工智能 人工神经网络 地质学 物理 算法 地震学 量子力学 构造学
作者
Guangtong Ma,Taoning Zhu,Yu Ren,Huailong Shi,Yunguang Ye,Piji Feng,SU Zhen-hua,Chunxing Yao
标识
DOI:10.2139/ssrn.4841302
摘要

As urbanization advances, metro vehicles are navigating an increasing number of curves, bringing challenges to both vehicle safety and passenger comfort. There is no doubt that reliable acquisition of wheel-rail force is critical, since it has great significance for the safety and stability of vehicle operation. However, conventional wheel-rail force measurement methods are costly and difficult to measure high-frequency forces accurately. A data-driven approach to inverting the wheel-rail force will overcome the above problems. In this work, a transfer learning-based residual long short-term memory neural network with temporal pattern attention mechanism (TPA-ResLSTM) is proposed to realize real-time monitoring of wheel-rail force even when the dataset lacks adequate features. Firstly, according to the physical relationship between the wheel-rail force and acceleration, the learnable wheel-rail force inversion network model is established. Subsequently, a dynamic model for a B-type metro vehicle is adopted to simulate diverse cases as a virtual source and feed the dataset to the neural network. Afterward, the performance of the model is synthetically validated by the ablation study and field experimental data. Finally, the deep learning model is further improved by the transfer learning network, whose performance is comprehensively evaluated using limited data in small radius curve cases. The results show that the inversion model still has remarkable accuracy, in which the coefficient of determination reaches 0.949, under the case of limited training data. It means the proposed method reduces data demands for the network and provides real-time monitoring and feedback of wheel-rail force, possessing a more realistic sense for the operational safety of trains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
vergil完成签到,获得积分10
2秒前
clearlove完成签到,获得积分10
3秒前
3秒前
小二郎应助xudanhong采纳,获得10
4秒前
ured发布了新的文献求助10
4秒前
之道发布了新的文献求助10
4秒前
4秒前
Z160发布了新的文献求助10
4秒前
why完成签到,获得积分10
4秒前
4秒前
今后应助jtksbf采纳,获得30
5秒前
酷波er应助舒服的小土豆采纳,获得10
6秒前
爱静静应助clearlove采纳,获得10
6秒前
Lm发布了新的文献求助10
6秒前
7秒前
ymk完成签到,获得积分20
7秒前
哎嘿应助我心如铁石采纳,获得10
7秒前
深情安青应助自然方盒采纳,获得10
7秒前
7秒前
Neurodog完成签到,获得积分10
8秒前
LL完成签到,获得积分10
9秒前
11秒前
直立抽油烟机完成签到,获得积分10
11秒前
nininidoc完成签到,获得积分10
11秒前
安好发布了新的文献求助10
11秒前
gg发布了新的文献求助10
12秒前
12秒前
小杜发布了新的文献求助10
13秒前
13秒前
MUAL完成签到,获得积分10
13秒前
14秒前
烟花应助花凉采纳,获得10
14秒前
15秒前
想吃芝士焗饭完成签到 ,获得积分10
15秒前
妖精完成签到 ,获得积分10
15秒前
宁阿霜发布了新的文献求助10
16秒前
fxf完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151531
求助须知:如何正确求助?哪些是违规求助? 2802910
关于积分的说明 7851162
捐赠科研通 2460322
什么是DOI,文献DOI怎么找? 1309707
科研通“疑难数据库(出版商)”最低求助积分说明 628997
版权声明 601760