Wheel-Rail Force Inversion Via Transfer Learning-Based Residual Lstm Neural Network with Temporal Pattern Attention Mechanism

残余物 机制(生物学) 反演(地质) 学习迁移 计算机科学 人工智能 人工神经网络 地质学 物理 算法 地震学 量子力学 构造学
作者
Guangtong Ma,Taoning Zhu,Yu Ren,Huailong Shi,Yunguang Ye,Piji Feng,SU Zhen-hua,Chunxing Yao
标识
DOI:10.2139/ssrn.4841302
摘要

As urbanization advances, metro vehicles are navigating an increasing number of curves, bringing challenges to both vehicle safety and passenger comfort. There is no doubt that reliable acquisition of wheel-rail force is critical, since it has great significance for the safety and stability of vehicle operation. However, conventional wheel-rail force measurement methods are costly and difficult to measure high-frequency forces accurately. A data-driven approach to inverting the wheel-rail force will overcome the above problems. In this work, a transfer learning-based residual long short-term memory neural network with temporal pattern attention mechanism (TPA-ResLSTM) is proposed to realize real-time monitoring of wheel-rail force even when the dataset lacks adequate features. Firstly, according to the physical relationship between the wheel-rail force and acceleration, the learnable wheel-rail force inversion network model is established. Subsequently, a dynamic model for a B-type metro vehicle is adopted to simulate diverse cases as a virtual source and feed the dataset to the neural network. Afterward, the performance of the model is synthetically validated by the ablation study and field experimental data. Finally, the deep learning model is further improved by the transfer learning network, whose performance is comprehensively evaluated using limited data in small radius curve cases. The results show that the inversion model still has remarkable accuracy, in which the coefficient of determination reaches 0.949, under the case of limited training data. It means the proposed method reduces data demands for the network and provides real-time monitoring and feedback of wheel-rail force, possessing a more realistic sense for the operational safety of trains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小吴同学完成签到,获得积分10
1秒前
2秒前
搬砖小土妞完成签到,获得积分20
3秒前
大牛完成签到,获得积分10
3秒前
byron发布了新的文献求助10
4秒前
Esther发布了新的文献求助10
4秒前
研友_VZG7GZ应助一袋薯片采纳,获得10
5秒前
岸上牛发布了新的文献求助10
6秒前
6秒前
7秒前
默默的白桃完成签到,获得积分10
7秒前
彭佳丽完成签到,获得积分10
7秒前
7秒前
dy完成签到,获得积分10
7秒前
华仔应助lin采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
万能图书馆应助万物更始采纳,获得10
9秒前
CodeCraft应助yuan采纳,获得10
9秒前
9秒前
10秒前
10秒前
壮观飞珍完成签到,获得积分10
11秒前
Esther完成签到,获得积分10
11秒前
一梦发布了新的文献求助10
11秒前
耀阳发布了新的文献求助10
12秒前
Chou发布了新的文献求助10
12秒前
13秒前
13秒前
哈哈哈完成签到,获得积分10
14秒前
14秒前
科研小白发布了新的文献求助10
16秒前
00发布了新的文献求助10
16秒前
故意的身影完成签到,获得积分20
17秒前
zihanwang应助沉默傲芙采纳,获得10
17秒前
17秒前
Ava应助小凯采纳,获得10
18秒前
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070