Wheel-Rail Force Inversion Via Transfer Learning-Based Residual Lstm Neural Network with Temporal Pattern Attention Mechanism

残余物 机制(生物学) 反演(地质) 学习迁移 计算机科学 人工智能 人工神经网络 地质学 物理 算法 地震学 量子力学 构造学
作者
Guangtong Ma,Taoning Zhu,Yu Ren,Huailong Shi,Yunguang Ye,Piji Feng,SU Zhen-hua,Chunxing Yao
标识
DOI:10.2139/ssrn.4841302
摘要

As urbanization advances, metro vehicles are navigating an increasing number of curves, bringing challenges to both vehicle safety and passenger comfort. There is no doubt that reliable acquisition of wheel-rail force is critical, since it has great significance for the safety and stability of vehicle operation. However, conventional wheel-rail force measurement methods are costly and difficult to measure high-frequency forces accurately. A data-driven approach to inverting the wheel-rail force will overcome the above problems. In this work, a transfer learning-based residual long short-term memory neural network with temporal pattern attention mechanism (TPA-ResLSTM) is proposed to realize real-time monitoring of wheel-rail force even when the dataset lacks adequate features. Firstly, according to the physical relationship between the wheel-rail force and acceleration, the learnable wheel-rail force inversion network model is established. Subsequently, a dynamic model for a B-type metro vehicle is adopted to simulate diverse cases as a virtual source and feed the dataset to the neural network. Afterward, the performance of the model is synthetically validated by the ablation study and field experimental data. Finally, the deep learning model is further improved by the transfer learning network, whose performance is comprehensively evaluated using limited data in small radius curve cases. The results show that the inversion model still has remarkable accuracy, in which the coefficient of determination reaches 0.949, under the case of limited training data. It means the proposed method reduces data demands for the network and provides real-time monitoring and feedback of wheel-rail force, possessing a more realistic sense for the operational safety of trains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重峻熙完成签到,获得积分10
1秒前
彭于晏应助优美紫槐采纳,获得10
1秒前
orixero应助JamesYang采纳,获得10
2秒前
4秒前
Akim应助XX采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
月来越好应助科研力力采纳,获得10
6秒前
xiaoya发布了新的文献求助10
6秒前
8秒前
8秒前
qq完成签到,获得积分10
9秒前
9秒前
11秒前
qq发布了新的文献求助10
12秒前
华仔应助YM采纳,获得10
12秒前
lutao发布了新的文献求助10
12秒前
12秒前
科研力力完成签到,获得积分20
13秒前
付红银发布了新的文献求助10
13秒前
清蒸三文鱼完成签到,获得积分10
13秒前
wzbc完成签到,获得积分10
15秒前
天天快乐应助Nivis采纳,获得10
17秒前
细心平卉完成签到,获得积分10
18秒前
18秒前
dzc发布了新的文献求助10
19秒前
hsa_ID发布了新的文献求助10
19秒前
20秒前
火星上香菇完成签到,获得积分10
20秒前
21秒前
Hello应助lutao采纳,获得10
21秒前
2220190143发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
JamesYang发布了新的文献求助10
24秒前
Yuanyuan发布了新的文献求助10
25秒前
XX发布了新的文献求助10
26秒前
安静妙芙发布了新的文献求助10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729406
求助须知:如何正确求助?哪些是违规求助? 5317854
关于积分的说明 15316486
捐赠科研通 4876367
什么是DOI,文献DOI怎么找? 2619340
邀请新用户注册赠送积分活动 1568891
关于科研通互助平台的介绍 1525420