Wheel-Rail Force Inversion Via Transfer Learning-Based Residual Lstm Neural Network with Temporal Pattern Attention Mechanism

残余物 机制(生物学) 反演(地质) 学习迁移 计算机科学 人工智能 人工神经网络 地质学 物理 算法 地震学 量子力学 构造学
作者
Guangtong Ma,Taoning Zhu,Yu Ren,Huailong Shi,Yunguang Ye,Piji Feng,SU Zhen-hua,Chunxing Yao
标识
DOI:10.2139/ssrn.4841302
摘要

As urbanization advances, metro vehicles are navigating an increasing number of curves, bringing challenges to both vehicle safety and passenger comfort. There is no doubt that reliable acquisition of wheel-rail force is critical, since it has great significance for the safety and stability of vehicle operation. However, conventional wheel-rail force measurement methods are costly and difficult to measure high-frequency forces accurately. A data-driven approach to inverting the wheel-rail force will overcome the above problems. In this work, a transfer learning-based residual long short-term memory neural network with temporal pattern attention mechanism (TPA-ResLSTM) is proposed to realize real-time monitoring of wheel-rail force even when the dataset lacks adequate features. Firstly, according to the physical relationship between the wheel-rail force and acceleration, the learnable wheel-rail force inversion network model is established. Subsequently, a dynamic model for a B-type metro vehicle is adopted to simulate diverse cases as a virtual source and feed the dataset to the neural network. Afterward, the performance of the model is synthetically validated by the ablation study and field experimental data. Finally, the deep learning model is further improved by the transfer learning network, whose performance is comprehensively evaluated using limited data in small radius curve cases. The results show that the inversion model still has remarkable accuracy, in which the coefficient of determination reaches 0.949, under the case of limited training data. It means the proposed method reduces data demands for the network and provides real-time monitoring and feedback of wheel-rail force, possessing a more realistic sense for the operational safety of trains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青春完成签到 ,获得积分10
刚刚
李爱国应助幽默的滑板采纳,获得10
1秒前
洛七落完成签到 ,获得积分10
1秒前
1秒前
2秒前
沈颖完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
邵梁健完成签到,获得积分10
4秒前
4秒前
wanci应助细腻的青采纳,获得50
5秒前
5秒前
Zinia完成签到,获得积分10
6秒前
太渊完成签到 ,获得积分10
8秒前
Litchi完成签到 ,获得积分10
8秒前
沈颖发布了新的文献求助10
8秒前
南枳完成签到 ,获得积分10
9秒前
鲜艳的仙人掌完成签到,获得积分10
10秒前
科目三应助liugm采纳,获得10
10秒前
常青叶发布了新的文献求助10
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
籽儿完成签到,获得积分10
13秒前
13秒前
yzm完成签到,获得积分10
13秒前
Jason完成签到,获得积分20
13秒前
Zilong864完成签到,获得积分10
14秒前
14秒前
15秒前
HongMou完成签到,获得积分10
15秒前
aurevoir完成签到,获得积分10
15秒前
16秒前
志龙发布了新的文献求助10
16秒前
16秒前
17秒前
Luca发布了新的文献求助10
17秒前
Jason发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660323
求助须知:如何正确求助?哪些是违规求助? 4833206
关于积分的说明 15090227
捐赠科研通 4818974
什么是DOI,文献DOI怎么找? 2578909
邀请新用户注册赠送积分活动 1533480
关于科研通互助平台的介绍 1492243