已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Wheel-Rail Force Inversion Via Transfer Learning-Based Residual Lstm Neural Network with Temporal Pattern Attention Mechanism

残余物 机制(生物学) 反演(地质) 学习迁移 计算机科学 人工智能 人工神经网络 地质学 物理 算法 地震学 量子力学 构造学
作者
Guangtong Ma,Taoning Zhu,Yu Ren,Huailong Shi,Yunguang Ye,Piji Feng,SU Zhen-hua,Chunxing Yao
标识
DOI:10.2139/ssrn.4841302
摘要

As urbanization advances, metro vehicles are navigating an increasing number of curves, bringing challenges to both vehicle safety and passenger comfort. There is no doubt that reliable acquisition of wheel-rail force is critical, since it has great significance for the safety and stability of vehicle operation. However, conventional wheel-rail force measurement methods are costly and difficult to measure high-frequency forces accurately. A data-driven approach to inverting the wheel-rail force will overcome the above problems. In this work, a transfer learning-based residual long short-term memory neural network with temporal pattern attention mechanism (TPA-ResLSTM) is proposed to realize real-time monitoring of wheel-rail force even when the dataset lacks adequate features. Firstly, according to the physical relationship between the wheel-rail force and acceleration, the learnable wheel-rail force inversion network model is established. Subsequently, a dynamic model for a B-type metro vehicle is adopted to simulate diverse cases as a virtual source and feed the dataset to the neural network. Afterward, the performance of the model is synthetically validated by the ablation study and field experimental data. Finally, the deep learning model is further improved by the transfer learning network, whose performance is comprehensively evaluated using limited data in small radius curve cases. The results show that the inversion model still has remarkable accuracy, in which the coefficient of determination reaches 0.949, under the case of limited training data. It means the proposed method reduces data demands for the network and provides real-time monitoring and feedback of wheel-rail force, possessing a more realistic sense for the operational safety of trains.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
害羞小刺猬完成签到,获得积分20
1秒前
2秒前
4秒前
wure10完成签到 ,获得积分10
4秒前
Owen应助害羞小刺猬采纳,获得10
5秒前
失眠妙竹发布了新的文献求助10
8秒前
聪明夏波完成签到 ,获得积分10
11秒前
taku完成签到 ,获得积分10
12秒前
zzx发布了新的文献求助10
13秒前
14秒前
14秒前
zhh完成签到,获得积分10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
六六完成签到 ,获得积分10
15秒前
啦啦啦完成签到 ,获得积分10
16秒前
17秒前
17秒前
rr的妈沫儿完成签到 ,获得积分10
19秒前
23秒前
xdmhv完成签到 ,获得积分10
24秒前
25秒前
了0完成签到 ,获得积分10
28秒前
WUHUDASM发布了新的文献求助10
29秒前
QTQ完成签到 ,获得积分10
30秒前
hayek完成签到,获得积分10
33秒前
tjnksy完成签到,获得积分10
33秒前
香蕉觅云应助爱笑的盼晴采纳,获得10
46秒前
与光完成签到 ,获得积分10
49秒前
51秒前
54秒前
lagertha发布了新的文献求助10
55秒前
55秒前
yhl完成签到 ,获得积分10
56秒前
小丑鱼儿完成签到 ,获得积分10
57秒前
土狗望月完成签到,获得积分10
57秒前
何yezi完成签到 ,获得积分10
58秒前
59秒前
1分钟前
回家放羊完成签到 ,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
The recovery-stress questionnaires : user manual 600
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5854852
求助须知:如何正确求助?哪些是违规求助? 6301084
关于积分的说明 15632635
捐赠科研通 4969994
什么是DOI,文献DOI怎么找? 2680218
邀请新用户注册赠送积分活动 1624232
关于科研通互助平台的介绍 1581003