亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Wheel-Rail Force Inversion Via Transfer Learning-Based Residual Lstm Neural Network with Temporal Pattern Attention Mechanism

残余物 机制(生物学) 反演(地质) 学习迁移 计算机科学 人工智能 人工神经网络 地质学 物理 算法 地震学 量子力学 构造学
作者
Guangtong Ma,Taoning Zhu,Yu Ren,Huailong Shi,Yunguang Ye,Piji Feng,SU Zhen-hua,Chunxing Yao
标识
DOI:10.2139/ssrn.4841302
摘要

As urbanization advances, metro vehicles are navigating an increasing number of curves, bringing challenges to both vehicle safety and passenger comfort. There is no doubt that reliable acquisition of wheel-rail force is critical, since it has great significance for the safety and stability of vehicle operation. However, conventional wheel-rail force measurement methods are costly and difficult to measure high-frequency forces accurately. A data-driven approach to inverting the wheel-rail force will overcome the above problems. In this work, a transfer learning-based residual long short-term memory neural network with temporal pattern attention mechanism (TPA-ResLSTM) is proposed to realize real-time monitoring of wheel-rail force even when the dataset lacks adequate features. Firstly, according to the physical relationship between the wheel-rail force and acceleration, the learnable wheel-rail force inversion network model is established. Subsequently, a dynamic model for a B-type metro vehicle is adopted to simulate diverse cases as a virtual source and feed the dataset to the neural network. Afterward, the performance of the model is synthetically validated by the ablation study and field experimental data. Finally, the deep learning model is further improved by the transfer learning network, whose performance is comprehensively evaluated using limited data in small radius curve cases. The results show that the inversion model still has remarkable accuracy, in which the coefficient of determination reaches 0.949, under the case of limited training data. It means the proposed method reduces data demands for the network and provides real-time monitoring and feedback of wheel-rail force, possessing a more realistic sense for the operational safety of trains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋灵凡发布了新的文献求助10
2秒前
xiezizai完成签到,获得积分10
3秒前
YuxinChen完成签到 ,获得积分10
3秒前
4秒前
瘦瘦以亦发布了新的文献求助10
10秒前
瘦瘦以亦完成签到,获得积分10
22秒前
26秒前
27秒前
Qinghen发布了新的文献求助10
33秒前
BowieHuang应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
53秒前
56秒前
科研通AI2S应助倒逆之蝶采纳,获得10
1分钟前
1分钟前
热心一江完成签到,获得积分20
1分钟前
年少丶完成签到,获得积分10
1分钟前
热心一江发布了新的文献求助10
1分钟前
poker完成签到,获得积分10
1分钟前
1分钟前
1分钟前
c陈发布了新的文献求助10
1分钟前
1分钟前
聪聪完成签到,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
秋作完成签到,获得积分10
1分钟前
XD824发布了新的文献求助10
1分钟前
热心一江发布了新的文献求助10
1分钟前
2分钟前
倩倩完成签到 ,获得积分10
2分钟前
2分钟前
Perry完成签到,获得积分0
2分钟前
2分钟前
2分钟前
汉堡包应助爱睡觉的鱼采纳,获得10
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
漂亮夏兰完成签到 ,获得积分10
2分钟前
明轩完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664136
求助须知:如何正确求助?哪些是违规求助? 4858127
关于积分的说明 15107210
捐赠科研通 4822602
什么是DOI,文献DOI怎么找? 2581577
邀请新用户注册赠送积分活动 1535787
关于科研通互助平台的介绍 1494017