Wheel-Rail Force Inversion Via Transfer Learning-Based Residual Lstm Neural Network with Temporal Pattern Attention Mechanism

残余物 机制(生物学) 反演(地质) 学习迁移 计算机科学 人工智能 人工神经网络 地质学 物理 算法 地震学 量子力学 构造学
作者
Guangtong Ma,Taoning Zhu,Yu Ren,Huailong Shi,Yunguang Ye,Piji Feng,SU Zhen-hua,Chunxing Yao
标识
DOI:10.2139/ssrn.4841302
摘要

As urbanization advances, metro vehicles are navigating an increasing number of curves, bringing challenges to both vehicle safety and passenger comfort. There is no doubt that reliable acquisition of wheel-rail force is critical, since it has great significance for the safety and stability of vehicle operation. However, conventional wheel-rail force measurement methods are costly and difficult to measure high-frequency forces accurately. A data-driven approach to inverting the wheel-rail force will overcome the above problems. In this work, a transfer learning-based residual long short-term memory neural network with temporal pattern attention mechanism (TPA-ResLSTM) is proposed to realize real-time monitoring of wheel-rail force even when the dataset lacks adequate features. Firstly, according to the physical relationship between the wheel-rail force and acceleration, the learnable wheel-rail force inversion network model is established. Subsequently, a dynamic model for a B-type metro vehicle is adopted to simulate diverse cases as a virtual source and feed the dataset to the neural network. Afterward, the performance of the model is synthetically validated by the ablation study and field experimental data. Finally, the deep learning model is further improved by the transfer learning network, whose performance is comprehensively evaluated using limited data in small radius curve cases. The results show that the inversion model still has remarkable accuracy, in which the coefficient of determination reaches 0.949, under the case of limited training data. It means the proposed method reduces data demands for the network and provides real-time monitoring and feedback of wheel-rail force, possessing a more realistic sense for the operational safety of trains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助Fundamental采纳,获得10
刚刚
刚刚
miumiuka发布了新的文献求助10
1秒前
greenPASS666发布了新的文献求助10
2秒前
xuanxuan发布了新的文献求助10
2秒前
zfy发布了新的文献求助10
4秒前
4秒前
4秒前
Maor完成签到,获得积分10
4秒前
白菜发布了新的文献求助10
5秒前
5秒前
6秒前
妮妮完成签到 ,获得积分10
8秒前
8秒前
傲娇的凡旋应助spurs17采纳,获得10
8秒前
长情若魔完成签到,获得积分10
10秒前
XM完成签到,获得积分10
10秒前
10秒前
LQW发布了新的文献求助30
10秒前
大个应助Rrr采纳,获得10
10秒前
11秒前
12秒前
12秒前
14秒前
zfy完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
16秒前
w17638619025完成签到 ,获得积分20
17秒前
撒上咖啡应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
18秒前
菠萝吹雪应助科研通管家采纳,获得30
18秒前
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808