Automatic Full Slip Detection System implemented on the Strain-based Intelligent Tire at severe maneuvers

接触片 打滑(空气动力学) 汽车工程 轮胎平衡 应变计 路面 滑移率 工程类 支持向量机 计算机科学 控制理论(社会学) 结构工程 人工智能 材料科学 控制(管理) 天然橡胶 土木工程 制动器 复合材料 航空航天工程
作者
Ma Fernanda Mendoza-Petit,Daniel García-Pozuelo,Vicente Díaz,Ramón Gutiérrez-Moizant,Oluremi Olatunbosun
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:183: 109577-109577 被引量:8
标识
DOI:10.1016/j.ymssp.2022.109577
摘要

Tires are the only components of vehicles in contact with the road surface. The tire–road interaction yields many dynamic parameters that have an impact on the final behavior of the vehicle, such as the forces in the tire–road interaction, the length of the contact patch, the velocity in the contact patch, and the effective radius of the tire. Previous studies have shown the feasibility of estimating these parameters through the strain curves measured with a tire instrumented with strain gauges, denoted as Strain-based Intelligent Tire. These parameters are required to characterize the loss of grip in the tire–road interaction. Nonetheless, the time and computer resources required for estimating the level of adherence is not compatible with the need of current active control systems, and the instant data retrieval about the tire–road surface. The objective of this paper is to present a novel methodology in order to develop an Automatic Full Slip Detection System implemented on the Strain-based Intelligent Tire, while the specific developments for real time will be studied in the further steps of this research. This system operates with two conditions or states in the tire, namely, full sliding situation or non-full sliding situation. The inputs required to provide the tire condition are the strain curves measured when the tire is rolling. Therefore, the algorithms implemented in order to estimate the limit of adherence are presented. To delimit the states, the technique Support Vector Machines (SVM) is used to generate a separation hyperplane between these states. Support Vector Machines (SVM) is one of the most widely used supervised learning algorithms in the area of image recognition and, until now, had not been implemented in the automatic recognition of tire full slip detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cathy完成签到 ,获得积分10
1秒前
123完成签到 ,获得积分10
2秒前
rainny完成签到,获得积分10
4秒前
顺利的钢笔完成签到,获得积分10
4秒前
一切顺利完成签到,获得积分10
6秒前
银角大王完成签到,获得积分10
7秒前
7秒前
领导范儿应助MXX采纳,获得10
9秒前
未来的幻想完成签到,获得积分10
9秒前
ww完成签到,获得积分10
10秒前
感动的听荷完成签到,获得积分10
11秒前
12秒前
小白鸽完成签到,获得积分10
14秒前
HXJT发布了新的文献求助10
14秒前
Leo完成签到,获得积分10
15秒前
XIEMIN完成签到,获得积分10
17秒前
21完成签到,获得积分10
18秒前
Leo发布了新的文献求助10
18秒前
晚意完成签到 ,获得积分10
22秒前
优雅的怀莲完成签到,获得积分10
22秒前
科研通AI2S应助Leo采纳,获得10
24秒前
绿色催化完成签到,获得积分10
24秒前
25秒前
朴实初夏完成签到 ,获得积分10
26秒前
万事屋完成签到 ,获得积分10
26秒前
HXJT完成签到,获得积分10
27秒前
bingo完成签到,获得积分10
27秒前
JACK完成签到,获得积分10
27秒前
深山何处钟声鸣完成签到 ,获得积分10
27秒前
隐形曼青应助Viva采纳,获得10
30秒前
Zhai完成签到 ,获得积分10
30秒前
bkagyin应助东方立轩采纳,获得10
31秒前
gengfu完成签到,获得积分10
31秒前
张一楠发布了新的文献求助10
31秒前
王纪钧发布了新的文献求助10
32秒前
华仔应助陶醉太阳采纳,获得10
34秒前
无奈的萍完成签到,获得积分10
36秒前
良辰应助Viva采纳,获得10
37秒前
zhaoyang完成签到 ,获得积分10
38秒前
华仔应助jilongwang采纳,获得10
39秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162539
求助须知:如何正确求助?哪些是违规求助? 2813402
关于积分的说明 7900247
捐赠科研通 2472973
什么是DOI,文献DOI怎么找? 1316615
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175