Automatic Full Slip Detection System implemented on the Strain-based Intelligent Tire at severe maneuvers

接触片 打滑(空气动力学) 汽车工程 轮胎平衡 应变计 路面 滑移率 工程类 支持向量机 计算机科学 控制理论(社会学) 结构工程 人工智能 材料科学 控制(管理) 天然橡胶 土木工程 制动器 复合材料 航空航天工程
作者
Ma Fernanda Mendoza-Petit,Daniel García-Pozuelo,Vicente Díaz,Ramón Gutiérrez-Moizant,Oluremi Olatunbosun
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:183: 109577-109577 被引量:8
标识
DOI:10.1016/j.ymssp.2022.109577
摘要

Tires are the only components of vehicles in contact with the road surface. The tire–road interaction yields many dynamic parameters that have an impact on the final behavior of the vehicle, such as the forces in the tire–road interaction, the length of the contact patch, the velocity in the contact patch, and the effective radius of the tire. Previous studies have shown the feasibility of estimating these parameters through the strain curves measured with a tire instrumented with strain gauges, denoted as Strain-based Intelligent Tire. These parameters are required to characterize the loss of grip in the tire–road interaction. Nonetheless, the time and computer resources required for estimating the level of adherence is not compatible with the need of current active control systems, and the instant data retrieval about the tire–road surface. The objective of this paper is to present a novel methodology in order to develop an Automatic Full Slip Detection System implemented on the Strain-based Intelligent Tire, while the specific developments for real time will be studied in the further steps of this research. This system operates with two conditions or states in the tire, namely, full sliding situation or non-full sliding situation. The inputs required to provide the tire condition are the strain curves measured when the tire is rolling. Therefore, the algorithms implemented in order to estimate the limit of adherence are presented. To delimit the states, the technique Support Vector Machines (SVM) is used to generate a separation hyperplane between these states. Support Vector Machines (SVM) is one of the most widely used supervised learning algorithms in the area of image recognition and, until now, had not been implemented in the automatic recognition of tire full slip detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
victorchen完成签到,获得积分10
2秒前
4秒前
不爱吃鱼的猫完成签到,获得积分10
5秒前
Lucas应助1900th采纳,获得10
6秒前
6秒前
7秒前
7秒前
于水清发布了新的文献求助20
8秒前
Wl0115发布了新的文献求助10
8秒前
木日发布了新的文献求助10
8秒前
甜甜完成签到 ,获得积分20
9秒前
cjs发布了新的文献求助10
9秒前
10秒前
10秒前
飘逸的苡发布了新的文献求助10
10秒前
22222发布了新的文献求助10
11秒前
Orijump发布了新的文献求助10
12秒前
Owen应助SMLW采纳,获得10
12秒前
木槿完成签到,获得积分10
13秒前
14秒前
嘎嘎发布了新的文献求助10
14秒前
RJ完成签到,获得积分10
14秒前
15秒前
15秒前
火火吴发布了新的文献求助10
16秒前
jenningseastera应助研友_VZG64n采纳,获得10
17秒前
熊熊发布了新的文献求助10
19秒前
旺仔先生完成签到,获得积分0
19秒前
yangzai发布了新的文献求助10
20秒前
FashionBoy应助不想太多采纳,获得10
21秒前
zx发布了新的文献求助10
21秒前
21秒前
25秒前
于水清完成签到,获得积分10
26秒前
听说你还在搞什么原创完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135734
捐赠科研通 3239863
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150