Automatic Full Slip Detection System implemented on the Strain-based Intelligent Tire at severe maneuvers

接触片 打滑(空气动力学) 汽车工程 轮胎平衡 应变计 路面 滑移率 工程类 支持向量机 计算机科学 控制理论(社会学) 结构工程 人工智能 材料科学 控制(管理) 制动器 天然橡胶 复合材料 土木工程 航空航天工程
作者
Ma Fernanda Mendoza-Petit,Daniel García-Pozuelo,Vicente Díaz,Ramón Gutiérrez-Moizant,Oluremi Olatunbosun
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:183: 109577-109577 被引量:8
标识
DOI:10.1016/j.ymssp.2022.109577
摘要

Tires are the only components of vehicles in contact with the road surface. The tire–road interaction yields many dynamic parameters that have an impact on the final behavior of the vehicle, such as the forces in the tire–road interaction, the length of the contact patch, the velocity in the contact patch, and the effective radius of the tire. Previous studies have shown the feasibility of estimating these parameters through the strain curves measured with a tire instrumented with strain gauges, denoted as Strain-based Intelligent Tire. These parameters are required to characterize the loss of grip in the tire–road interaction. Nonetheless, the time and computer resources required for estimating the level of adherence is not compatible with the need of current active control systems, and the instant data retrieval about the tire–road surface. The objective of this paper is to present a novel methodology in order to develop an Automatic Full Slip Detection System implemented on the Strain-based Intelligent Tire, while the specific developments for real time will be studied in the further steps of this research. This system operates with two conditions or states in the tire, namely, full sliding situation or non-full sliding situation. The inputs required to provide the tire condition are the strain curves measured when the tire is rolling. Therefore, the algorithms implemented in order to estimate the limit of adherence are presented. To delimit the states, the technique Support Vector Machines (SVM) is used to generate a separation hyperplane between these states. Support Vector Machines (SVM) is one of the most widely used supervised learning algorithms in the area of image recognition and, until now, had not been implemented in the automatic recognition of tire full slip detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
允柠完成签到,获得积分10
1秒前
感动的梦柏完成签到,获得积分10
1秒前
1秒前
1秒前
豆腐完成签到,获得积分10
1秒前
1秒前
2秒前
Joel发布了新的文献求助10
2秒前
过分发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
CodeCraft应助舒适的易烟采纳,获得10
3秒前
4秒前
layman完成签到,获得积分10
4秒前
starlettt完成签到,获得积分10
4秒前
5秒前
崔懿龍发布了新的文献求助10
5秒前
科研韭菜发布了新的文献求助10
5秒前
溜溜梅发布了新的文献求助10
5秒前
听闻墨笙完成签到,获得积分10
5秒前
5秒前
dustomb完成签到,获得积分10
6秒前
充电宝应助武巧运采纳,获得10
6秒前
今后应助gett采纳,获得10
6秒前
英姑应助zhaopenghui采纳,获得10
6秒前
6秒前
6秒前
噔噔噔哒哒哒完成签到 ,获得积分10
6秒前
77发布了新的文献求助10
6秒前
7秒前
yznfly应助岚婘采纳,获得20
7秒前
少川完成签到 ,获得积分10
7秒前
7秒前
啦啦发布了新的文献求助10
7秒前
he发布了新的文献求助10
7秒前
7秒前
丽丽丽发布了新的文献求助10
7秒前
zxy发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506003
求助须知:如何正确求助?哪些是违规求助? 4601533
关于积分的说明 14477031
捐赠科研通 4535471
什么是DOI,文献DOI怎么找? 2485413
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440873