Automatic Full Slip Detection System implemented on the Strain-based Intelligent Tire at severe maneuvers

接触片 打滑(空气动力学) 汽车工程 轮胎平衡 应变计 路面 滑移率 工程类 支持向量机 计算机科学 控制理论(社会学) 结构工程 人工智能 材料科学 控制(管理) 制动器 天然橡胶 复合材料 土木工程 航空航天工程
作者
Ma Fernanda Mendoza-Petit,Daniel García-Pozuelo,Vicente Díaz,Ramón Gutiérrez-Moizant,Oluremi Olatunbosun
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:183: 109577-109577 被引量:8
标识
DOI:10.1016/j.ymssp.2022.109577
摘要

Tires are the only components of vehicles in contact with the road surface. The tire–road interaction yields many dynamic parameters that have an impact on the final behavior of the vehicle, such as the forces in the tire–road interaction, the length of the contact patch, the velocity in the contact patch, and the effective radius of the tire. Previous studies have shown the feasibility of estimating these parameters through the strain curves measured with a tire instrumented with strain gauges, denoted as Strain-based Intelligent Tire. These parameters are required to characterize the loss of grip in the tire–road interaction. Nonetheless, the time and computer resources required for estimating the level of adherence is not compatible with the need of current active control systems, and the instant data retrieval about the tire–road surface. The objective of this paper is to present a novel methodology in order to develop an Automatic Full Slip Detection System implemented on the Strain-based Intelligent Tire, while the specific developments for real time will be studied in the further steps of this research. This system operates with two conditions or states in the tire, namely, full sliding situation or non-full sliding situation. The inputs required to provide the tire condition are the strain curves measured when the tire is rolling. Therefore, the algorithms implemented in order to estimate the limit of adherence are presented. To delimit the states, the technique Support Vector Machines (SVM) is used to generate a separation hyperplane between these states. Support Vector Machines (SVM) is one of the most widely used supervised learning algorithms in the area of image recognition and, until now, had not been implemented in the automatic recognition of tire full slip detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助加菲丰丰采纳,获得10
1秒前
冷静冷风完成签到 ,获得积分10
1秒前
3秒前
4秒前
aabbfz发布了新的文献求助10
4秒前
杨萌发布了新的文献求助10
4秒前
9377应助杨佳采纳,获得10
4秒前
Vicky完成签到,获得积分10
5秒前
yhmi0809完成签到,获得积分10
5秒前
nc发布了新的文献求助10
5秒前
赤枫彤云完成签到,获得积分10
5秒前
7秒前
英俊的铭应助Suliove采纳,获得10
7秒前
yaorongxia发布了新的文献求助10
7秒前
8秒前
墨白完成签到,获得积分10
8秒前
Dreamy发布了新的文献求助10
8秒前
11秒前
MaBaoYun关注了科研通微信公众号
12秒前
量子星尘发布了新的文献求助10
12秒前
yaorongxia完成签到,获得积分20
14秒前
Zxc发布了新的文献求助10
14秒前
lxj完成签到 ,获得积分10
15秒前
16秒前
16秒前
NexusExplorer应助721采纳,获得10
17秒前
云朵完成签到 ,获得积分10
17秒前
17秒前
18秒前
传奇3应助小李呀采纳,获得10
18秒前
18秒前
善学以致用应助Dreamy采纳,获得10
19秒前
科研天才发布了新的文献求助10
20秒前
21秒前
22秒前
YUAN发布了新的文献求助10
22秒前
彭于晏应助wzx采纳,获得10
24秒前
24秒前
史淼荷发布了新的文献求助20
25秒前
子车采蓝发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425506
求助须知:如何正确求助?哪些是违规求助? 4539540
关于积分的说明 14168368
捐赠科研通 4457101
什么是DOI,文献DOI怎么找? 2444423
邀请新用户注册赠送积分活动 1435344
关于科研通互助平台的介绍 1412740