Automatic Full Slip Detection System implemented on the Strain-based Intelligent Tire at severe maneuvers

接触片 打滑(空气动力学) 汽车工程 轮胎平衡 应变计 路面 滑移率 工程类 支持向量机 计算机科学 控制理论(社会学) 结构工程 人工智能 材料科学 控制(管理) 制动器 天然橡胶 复合材料 土木工程 航空航天工程
作者
Ma Fernanda Mendoza-Petit,Daniel García-Pozuelo,Vicente Díaz,Ramón Gutiérrez-Moizant,Oluremi Olatunbosun
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:183: 109577-109577 被引量:8
标识
DOI:10.1016/j.ymssp.2022.109577
摘要

Tires are the only components of vehicles in contact with the road surface. The tire–road interaction yields many dynamic parameters that have an impact on the final behavior of the vehicle, such as the forces in the tire–road interaction, the length of the contact patch, the velocity in the contact patch, and the effective radius of the tire. Previous studies have shown the feasibility of estimating these parameters through the strain curves measured with a tire instrumented with strain gauges, denoted as Strain-based Intelligent Tire. These parameters are required to characterize the loss of grip in the tire–road interaction. Nonetheless, the time and computer resources required for estimating the level of adherence is not compatible with the need of current active control systems, and the instant data retrieval about the tire–road surface. The objective of this paper is to present a novel methodology in order to develop an Automatic Full Slip Detection System implemented on the Strain-based Intelligent Tire, while the specific developments for real time will be studied in the further steps of this research. This system operates with two conditions or states in the tire, namely, full sliding situation or non-full sliding situation. The inputs required to provide the tire condition are the strain curves measured when the tire is rolling. Therefore, the algorithms implemented in order to estimate the limit of adherence are presented. To delimit the states, the technique Support Vector Machines (SVM) is used to generate a separation hyperplane between these states. Support Vector Machines (SVM) is one of the most widely used supervised learning algorithms in the area of image recognition and, until now, had not been implemented in the automatic recognition of tire full slip detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独绮梅发布了新的文献求助30
刚刚
隐形曼青应助111采纳,获得10
刚刚
哼哼完成签到,获得积分20
1秒前
脑洞疼应助6a采纳,获得10
1秒前
CipherSage应助Dave采纳,获得10
2秒前
小雨唱片发布了新的文献求助10
2秒前
传奇3应助秀丽松思采纳,获得10
3秒前
LQY完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
海峰荣完成签到,获得积分10
6秒前
浮游应助甜甜麦片采纳,获得10
7秒前
111完成签到,获得积分10
7秒前
7秒前
浮游应助肖敏采纳,获得10
9秒前
科研通AI6应助肖敏采纳,获得10
9秒前
封听白完成签到,获得积分0
10秒前
华仔应助科研通管家采纳,获得10
10秒前
10秒前
12345完成签到,获得积分20
10秒前
cosmos应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
小蘑菇应助na采纳,获得10
10秒前
11应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
浮游应助peng采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
章铭-111发布了新的文献求助200
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
科研通AI5应助duo采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
用户123发布了新的文献求助10
12秒前
ding应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124930
求助须知:如何正确求助?哪些是违规求助? 4328978
关于积分的说明 13489368
捐赠科研通 4163582
什么是DOI,文献DOI怎么找? 2282431
邀请新用户注册赠送积分活动 1283622
关于科研通互助平台的介绍 1222842