亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of loosening angle for mark bolted joints with computer vision and geometric imaging

椭圆 人工智能 计算机视觉 分割 计算机科学 转化(遗传学) 角点检测 机器视觉 图像处理 卷积神经网络 图像(数学) 数学 几何学 生物化学 基因 化学
作者
Xinjian Deng,Jianhua Liu,Honghan Gong,Jiayu Huang
出处
期刊:Automation in Construction [Elsevier]
卷期号:142: 104517-104517 被引量:7
标识
DOI:10.1016/j.autcon.2022.104517
摘要

Mark bars drawn on the surfaces of bolted joints are widely used to indicate the severity of loosening. The automatic and accurate determination of the loosening angle of mark bolted joints is a challenging issue that has not been investigated previously. This determination will release workers from heavy workloads. This study proposes an automated method for detecting the loosening angle of mark bolted joints by integrating computer vision and geometric imaging theory. This novel method contained three integrated modules. The first module used a Keypoint Regional Convolutional Neural Network (Keypoint-RCNN)-based deep learning algorithm to detect five keypoints and locate the region of interest (RoI). The second module recognised the mark ellipse and mark points using the transformation of the five detected keypoints and several image processing technologies such as dilation and expansion algorithms, a skeleton algorithm, and the least square method. In the last module, according to the geometric imaging theory, we derived a precise expression to calculate the loosening angle using the information for the mark points and mark ellipse. In lab-scale and real-scale environments, the average relative detection error was only 3.5%. This indicated that our method could accurately calculate the loosening angles of marked bolted joints even when the images were captured from an arbitrary view. In the future, some segmentation algorithms based on deep learning, distortion correction, accurate angle and length measuring instruments, and advanced transformation methods can be applied to further improve detection accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Moo5_zzZ发布了新的文献求助30
3秒前
Orange应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得30
6秒前
shhoing应助科研通管家采纳,获得10
6秒前
9秒前
15秒前
小黄还你好完成签到 ,获得积分10
17秒前
XXXXXX完成签到,获得积分10
19秒前
迅速的易巧完成签到 ,获得积分10
19秒前
烟花应助Moo5_zzZ采纳,获得30
21秒前
24秒前
31秒前
发条完成签到,获得积分10
32秒前
33秒前
34秒前
ghnt完成签到,获得积分10
36秒前
37秒前
从光远完成签到 ,获得积分10
38秒前
40秒前
852应助DDMouse采纳,获得10
41秒前
46秒前
XXXXXX发布了新的文献求助10
46秒前
ghnt发布了新的文献求助10
49秒前
51秒前
53秒前
54秒前
朝槿完成签到,获得积分10
55秒前
朝槿发布了新的文献求助10
59秒前
小白果果发布了新的文献求助10
1分钟前
1分钟前
Apple1234发布了新的文献求助30
1分钟前
李健的小迷弟应助Emma采纳,获得10
1分钟前
Moo5_zzZ发布了新的文献求助30
1分钟前
1分钟前
1分钟前
落落洛栖完成签到 ,获得积分10
1分钟前
彭于晏应助豆kl采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543029
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610941
捐赠科研通 4570445
什么是DOI,文献DOI怎么找? 2505771
邀请新用户注册赠送积分活动 1483063
关于科研通互助平台的介绍 1454364