Detection of loosening angle for mark bolted joints with computer vision and geometric imaging

椭圆 人工智能 计算机视觉 分割 计算机科学 转化(遗传学) 角点检测 机器视觉 图像处理 卷积神经网络 图像(数学) 数学 几何学 生物化学 基因 化学
作者
Xinjian Deng,Jianhua Liu,Honghan Gong,Jiayu Huang
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:142: 104517-104517 被引量:7
标识
DOI:10.1016/j.autcon.2022.104517
摘要

Mark bars drawn on the surfaces of bolted joints are widely used to indicate the severity of loosening. The automatic and accurate determination of the loosening angle of mark bolted joints is a challenging issue that has not been investigated previously. This determination will release workers from heavy workloads. This study proposes an automated method for detecting the loosening angle of mark bolted joints by integrating computer vision and geometric imaging theory. This novel method contained three integrated modules. The first module used a Keypoint Regional Convolutional Neural Network (Keypoint-RCNN)-based deep learning algorithm to detect five keypoints and locate the region of interest (RoI). The second module recognised the mark ellipse and mark points using the transformation of the five detected keypoints and several image processing technologies such as dilation and expansion algorithms, a skeleton algorithm, and the least square method. In the last module, according to the geometric imaging theory, we derived a precise expression to calculate the loosening angle using the information for the mark points and mark ellipse. In lab-scale and real-scale environments, the average relative detection error was only 3.5%. This indicated that our method could accurately calculate the loosening angles of marked bolted joints even when the images were captured from an arbitrary view. In the future, some segmentation algorithms based on deep learning, distortion correction, accurate angle and length measuring instruments, and advanced transformation methods can be applied to further improve detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助日辰水吉采纳,获得10
刚刚
elever11完成签到,获得积分10
刚刚
wwl发布了新的文献求助10
刚刚
1秒前
fishfun完成签到,获得积分10
1秒前
1秒前
顾gu完成签到,获得积分10
1秒前
1秒前
pandary发布了新的文献求助20
2秒前
文艺的海亦关注了科研通微信公众号
3秒前
4秒前
5秒前
所所应助酷酷银耳汤采纳,获得10
5秒前
wrwywzx完成签到,获得积分10
5秒前
5秒前
FashionBoy应助唐帅采纳,获得10
5秒前
淡淡从安完成签到 ,获得积分10
6秒前
6秒前
6秒前
zcl关闭了zcl文献求助
7秒前
vince发布了新的文献求助30
7秒前
傻傻的寄翠完成签到,获得积分10
8秒前
JamesPei应助时尚的青丝采纳,获得10
8秒前
小马甲应助淘气科研采纳,获得10
9秒前
9秒前
方俊驰发布了新的文献求助10
9秒前
yuxiaobolab发布了新的文献求助10
9秒前
娜娜完成签到 ,获得积分10
10秒前
YUNQI完成签到,获得积分20
10秒前
10秒前
10秒前
木木发布了新的文献求助10
10秒前
12秒前
12秒前
12秒前
沈沈完成签到,获得积分10
12秒前
14秒前
Zinc应助qx采纳,获得10
14秒前
方俊驰完成签到,获得积分10
14秒前
ricardo完成签到,获得积分10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978493
求助须知:如何正确求助?哪些是违规求助? 3522581
关于积分的说明 11213889
捐赠科研通 3260014
什么是DOI,文献DOI怎么找? 1799712
邀请新用户注册赠送积分活动 878604
科研通“疑难数据库(出版商)”最低求助积分说明 807002