Virtual Metrology in Semiconductor Fabrication Foundry Using Deep Learning Neural Networks

铸造厂 计量学 人工神经网络 计算机科学 半导体工业 制作 半导体器件制造 深度学习 制造工程 人工智能 材料科学 工程类 纳米技术 机械工程 薄脆饼 光学 物理 病理 替代医学 医学
作者
Tze Chiang Tin,Shing Chiang Tan,Ching Kwang Lee
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 81960-81973 被引量:12
标识
DOI:10.1109/access.2022.3193783
摘要

Physical metrology inspections are crucial in semiconductor fabrication foundry to ensure wafers are fabricated within the production specification limits and prevent faulty wafers from being shipped and installed in customers' devices. However, it is not possible to examine every wafer as such inspection would incur impractical cost on manpower, finances, and production cycle time (CT) of fabrication foundries (fabs). Virtual metrology (VM) presents an alternate approach to perform metrology inspection without incurring high costs by using machine learning (ML) models. By leveraging historical equipment and process data, ML models can be calibrated to estimate the targeted metrology variables to estimate the quality of wafers, thereby performing virtual inspection on wafers. Recently, VM researchers begin introducing deep learning (DL) into VM research works to examine its capability. Specifically, the VM researchers experimented on the convolutional neural network (CNN). The targeted metrologies are metrologies of plasma-based processes in both etching and chemical vapor deposition. Initial success has been reported by the VM researchers. While various CNN-based VM models have been proposed plasma-based fabrication processes, it has yet to be experimented in photolithography process. Motivated by the initial successes of CNN in plasma-based processes, this work is an initiative to experiment CNN's performance in predicting the overlay errors of photolithography process. Using data from a real fab, this work first establishes a baseline using the methodology of a prior work. Then, the prediction results of the proposed CNN model are compared with the baseline. The results showed that CNN is able to further reduce the prediction errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观的傲芙完成签到 ,获得积分10
1秒前
科目三应助聪明凉面采纳,获得10
2秒前
坚强白凝发布了新的文献求助10
3秒前
狂奔弟弟2完成签到 ,获得积分10
7秒前
7秒前
8秒前
He完成签到,获得积分10
9秒前
10秒前
ding应助坚强白凝采纳,获得10
11秒前
11秒前
11秒前
THJ123发布了新的文献求助10
11秒前
11秒前
在下风爵发布了新的文献求助10
12秒前
沁逍遥发布了新的文献求助10
15秒前
qiu发布了新的文献求助10
15秒前
坚强白凝完成签到,获得积分10
18秒前
Neon完成签到,获得积分10
24秒前
无所事事的無无完成签到,获得积分10
25秒前
FashionBoy应助沁逍遥采纳,获得10
26秒前
CMCM完成签到,获得积分20
27秒前
27秒前
飘逸蘑菇完成签到 ,获得积分10
28秒前
29秒前
32秒前
33秒前
轻松友容完成签到 ,获得积分10
34秒前
在下风爵完成签到,获得积分10
34秒前
38秒前
嘉幸的发布了新的文献求助10
38秒前
gao完成签到 ,获得积分10
39秒前
tangpc完成签到,获得积分10
39秒前
40秒前
科研通AI2S应助王逗逗采纳,获得10
40秒前
lambda发布了新的文献求助200
41秒前
wxy发布了新的文献求助10
43秒前
科研通AI5应助Luo采纳,获得30
43秒前
43秒前
43秒前
科研通AI5应助blenx采纳,获得10
46秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673458
求助须知:如何正确求助?哪些是违规求助? 3229111
关于积分的说明 9784159
捐赠科研通 2939678
什么是DOI,文献DOI怎么找? 1611198
邀请新用户注册赠送积分活动 760859
科研通“疑难数据库(出版商)”最低求助积分说明 736290