Software Sentiment Analysis Using Machine Learning with Different Word-Embedding

计算机科学 情绪分析 提交 人工智能 文字嵌入 词(群论) 特征工程 软件 机器学习 嵌入 特征选择 班级(哲学) 自然语言处理 数据挖掘 深度学习 程序设计语言 数据库 语言学 哲学
作者
Venkata Krishna Chandra Mula,Sanidhya Vijayvargiya,Lov Kumar,Surender Singh Samant,Lalita Bhanu Murthy
出处
期刊:Springer eBooks [Springer Nature]
卷期号:: 396-410
标识
DOI:10.1007/978-3-031-10548-7_29
摘要

AbstractSoftware sentiment analysis has applications in numerous software engineering tasks ranging from code suggestions to evaluating app reviews which help to save the development team valuable time and increase productivity. In recent years, sentiment analysis has been used to study the emotional state of developers through sources like commit messages. State-of-the-art sentiment analysis techniques have been employed to accomplish these tasks with varying results. The goal of this paper is to provide a comparison between the performance of various models for possible applications of sentiment analysis in software engineering. We have used three different datasets to account for the possible applications: JIRA, AppReviews, and StackOverflow. In this work, six word embedding techniques have been applied on above datasets to represent the text as n-dimensional vectors. To handle the skewed distribution of classes present in the data, we have employed two class balancing techniques in the form of SMOTE and Borderline-SMOTE. The resulting data is subjected to six feature selection techniques, and finally, the sentiment of the text is classified using 14 different classifiers. The experimental results suggest that some models are very successful in accurately classifying the sentiment of the text, whereas choosing the wrong combination of ML techniques can lead to disappointing performance.KeywordsSentiment analysisWord embeddingSMOTE
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
岱山完成签到,获得积分10
1秒前
踏实的白羊完成签到,获得积分10
2秒前
3秒前
学术嫪毐发布了新的文献求助10
3秒前
沈小葵完成签到,获得积分10
3秒前
3秒前
3秒前
H2J完成签到,获得积分10
4秒前
纯真新筠发布了新的文献求助10
4秒前
6秒前
6秒前
6秒前
小牛同志完成签到,获得积分10
7秒前
冥月发布了新的文献求助10
7秒前
AXDBB完成签到,获得积分10
7秒前
小马甲应助自由的小鸟采纳,获得10
7秒前
旋律依然发布了新的文献求助10
7秒前
8秒前
8秒前
SSDlk完成签到,获得积分10
9秒前
万能图书馆应助迷人问兰采纳,获得30
9秒前
所所应助xiaoan采纳,获得10
9秒前
面面完成签到,获得积分10
9秒前
希里发布了新的文献求助10
9秒前
11秒前
11秒前
李健应助zyw12138采纳,获得10
11秒前
12秒前
Accelerator完成签到,获得积分20
12秒前
12秒前
13秒前
合适台灯发布了新的文献求助30
13秒前
ding应助靓丽银耳汤采纳,获得10
14秒前
舒心的雪卉完成签到,获得积分20
14秒前
五氧化二磷完成签到,获得积分10
14秒前
TOMORI酱完成签到,获得积分10
15秒前
15秒前
cocu117发布了新的文献求助10
16秒前
小甘看世界完成签到,获得积分0
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950817
求助须知:如何正确求助?哪些是违规求助? 3496247
关于积分的说明 11080980
捐赠科研通 3226673
什么是DOI,文献DOI怎么找? 1783954
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993