Association between abdominal obesity indices and risk of cardiovascular events in Chinese populations with type 2 diabetes: a prospective cohort study

医学 血管病学 体质指数 内科学 2型糖尿病 腹部肥胖 前瞻性队列研究 肥胖 队列 2型糖尿病 队列研究 糖尿病 代谢综合征 内分泌学
作者
Tingting Qiao,Tao Luo,Hualian Pei,Bahegu Yimingniyazi,Dilihumaer Aili,Aliya Aimudula,Hui Zhao,Huanwen Zhang,Jianghong Dai,Duolao Wang
出处
期刊:Cardiovascular Diabetology [Springer Nature]
卷期号:21 (1): 225-225 被引量:157
标识
DOI:10.1186/s12933-022-01670-x
摘要

Abstract Background Waist circumference (WC), visceral adiposity index (VAI), lipid accumulation product (LAP), and Chinese visceral adiposity index (CVAI) are considered surrogate indicators of abdominal fat deposition, but the longitudinal association of these indices with cardiovascular (CV) events in adults with type 2 diabetes (T2D) remains unclear. Our study aimed to examine the associations between abdominal obesity indices and incident CV events among people with T2D and to compare their predictive performance in risk assessment. Methods The present study included 2328 individuals with T2D from the Xinjiang Multi-Ethnic Cohort. Multivariable Cox regression analyses were applied to assess the associations between abdominal obesity indices and CV events. Harrell's concordance statistic (C-statistic), net reclassification improvement (NRI) index, and integrated discrimination improvement (IDI) index were utilized to evaluate the predictive performance of each abdominal obesity index. Results At a median follow-up period of 59 months, 289 participants experienced CV events. After multivariable adjustment, each 1-SD increase in WC, VAI, LAP, and CVAI was associated with a higher risk of CV events in people with T2D, with adjusted hazard ratios (HRs) being 1.57 [95% CI (confidence interval): 1.39–1.78], 1.11 (95% CI 1.06–1.16), 1.46 (95% CI 1.36–1.57), and 1.78 (95% CI 1.57–2.01), respectively. In subgroup analyses, these positive associations appeared to be stronger among participants with body mass index (BMI) < 25 kg/m 2 compared to overweight/obese participants. As for the predictive performance, CVAI had the largest C-statistic (0.700, 95% CI 0.672–0.728) compared to VAI, LAP, WC, and BMI (C-statistic: 0.535 to 0.670, all P for comparison < 0.05). When the abdominal obesity index was added to the basic risk model, the CVAI index also showed the greatest incremental risk stratification (C-statistic: 0.751 vs. 0.701, P < 0.001; IDI: 4.3%, P < 0.001; NRI: 26.6%, P < 0.001). Conclusions This study provided additional evidence that all abdominal obesity indices were associated with the risk of CV events and highlighted that CVAI might be a valuable abdominal obesity indicator for identifying the high risk of CV events in Chinese populations with T2D. These results suggest that proactive assessment of abdominal obesity could be helpful for the effective clinical management of the diabetic population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xixi发布了新的文献求助10
1秒前
1秒前
1秒前
曲江离发布了新的文献求助10
1秒前
火力全开完成签到,获得积分10
1秒前
林云夕发布了新的文献求助10
2秒前
九九发布了新的文献求助10
2秒前
刘凤莲关注了科研通微信公众号
2秒前
weven完成签到,获得积分10
3秒前
宿雨完成签到,获得积分10
3秒前
3秒前
4秒前
泯珉发布了新的文献求助10
4秒前
Hello应助哈哈镜阿姐采纳,获得10
4秒前
满意语芙发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
塔木完成签到,获得积分10
6秒前
宿雨发布了新的文献求助10
6秒前
6秒前
幸运的元元完成签到,获得积分10
6秒前
zoe发布了新的文献求助10
7秒前
JJFly发布了新的文献求助10
7秒前
7秒前
wanci应助Orange采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
ChenLan完成签到,获得积分20
9秒前
香菜丸子发布了新的文献求助10
9秒前
shi完成签到,获得积分20
9秒前
myc641完成签到 ,获得积分10
9秒前
9秒前
zhscu完成签到,获得积分10
9秒前
weven发布了新的文献求助10
9秒前
9秒前
10秒前
LiuQianyi完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851