Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework

计算生物学 药物发现 蛋白质组 计算机科学 药品 人工智能 模式识别(心理学) 生物信息学 生物 药理学
作者
Xiangxiang Zeng,Hongxin Xiang,Linhui Yu,Jianmin Wang,Kenli Li,Ruth Nussinov,Feixiong Cheng
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (11): 1004-1016 被引量:60
标识
DOI:10.1038/s42256-022-00557-6
摘要

The clinical efficacy and safety of a drug is determined by its molecular properties and targets in humans. However, proteome-wide evaluation of all compounds in humans, or even animal models, is challenging. In this study, we present an unsupervised pretraining deep learning framework, named ImageMol, pretrained on 10 million unlabelled drug-like, bioactive molecules, to predict molecular targets of candidate compounds. The ImageMol framework is designed to pretrain chemical representations from unlabelled molecular images on the basis of local and global structural characteristics of molecules from pixels. We demonstrate high performance of ImageMol in evaluation of molecular properties (that is, the drug’s metabolism, brain penetration and toxicity) and molecular target profiles (that is, beta-secretase enzyme and kinases) across 51 benchmark datasets. ImageMol shows high accuracy in identifying anti-SARS-CoV-2 molecules across 13 high-throughput experimental datasets from the National Center for Advancing Translational Sciences. Via ImageMol, we identified candidate clinical 3C-like protease inhibitors for potential treatment of COVID-19. Predicting the properties of a molecule from its structure with high accuracy is a crucial problem in digital drug design. Instead of sequence features, Zeng and colleagues use an image representation of a large collection of bioactive molecules to pretrain a model that can be fine-tuned on specific property prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sv发布了新的文献求助10
2秒前
小田完成签到,获得积分10
2秒前
茶茶完成签到,获得积分20
2秒前
苏兴龙完成签到,获得积分10
2秒前
坚强的亦云-333完成签到,获得积分10
2秒前
Ava应助dan1029采纳,获得10
3秒前
3秒前
3秒前
奶糖最可爱完成签到,获得积分10
4秒前
4秒前
mojomars发布了新的文献求助10
5秒前
幽壑之潜蛟应助茶茶采纳,获得10
5秒前
6秒前
6秒前
6秒前
迅速海云完成签到,获得积分10
6秒前
sjxx发布了新的文献求助10
6秒前
6秒前
乐乐应助Rachel采纳,获得10
7秒前
7秒前
7秒前
天天快乐应助孤独的珩采纳,获得10
8秒前
帅气鹭洋发布了新的文献求助20
8秒前
9秒前
孙悦发布了新的文献求助10
9秒前
知性的绮兰完成签到,获得积分10
9秒前
9秒前
10秒前
Zzzoey完成签到,获得积分10
11秒前
11秒前
11秒前
英姑应助桂魄采纳,获得10
11秒前
11秒前
流北爷发布了新的文献求助10
12秒前
开心完成签到,获得积分10
12秒前
gguc发布了新的文献求助10
13秒前
万能图书馆应助okghy采纳,获得10
13秒前
13秒前
怕黑道消完成签到 ,获得积分10
13秒前
王小布完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794