清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Crowd counting via Localization Guided Transformer

判别式 人工智能 计算机科学 变压器 模式识别(心理学) 利用 特征提取 回归 密度估算 稳健性(进化) 机器学习 计算机视觉 数据挖掘 数学 工程类 电压 统计 电气工程 基因 生物化学 估计员 化学 计算机安全
作者
Lixian Yuan,Yandong Chen,Hefeng Wu,Wentao Wan,Pei Chen
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:104: 108430-108430
标识
DOI:10.1016/j.compeleceng.2022.108430
摘要

The rapidly growing demands on real-world crowd security and commercial applications have drawn widespread attentions to crowd counting, a computer vision task that aims to count all persons that appear in a given image. Recent state-of-the-art crowd counting methods commonly follow the density map regression paradigm, where a density map is estimated from the given image and summed up as the total count. Despite achieving impressive progress, these methods are still significantly challenged by complicated scenarios with severe scale variations of persons and cluttered backgrounds. Considering that localization-based counting methods, though less accurate, are able to learn more discriminative representation of persons through locating their positions, we propose a novel Localization Guided Transformer (LGT) framework in this work. The LGT aims to use the knowledge learned from a leading localization-based method to more accurately guide the estimation on density maps for crowd counting. Specifically, our framework first exploits a point-based model with two output heads, i.e., regression head and classification head, to simultaneously predict the head point proposals and point confidence respectively. Then, an intermediate multi-scale feature map is extracted from the shared backbone network and actively fused with the point location information. Afterwards, the fused features are fed into a Transformer module to explore patch-wise interactions via the self-attention mechanism, yielding a more discriminative representation for high-quality density map estimation. Extensive experiments and comparisons with state-of-the-art methods show the effectiveness of our proposed framework. • We propose a Localization Guided Transformer (LGT) framework. • We devise a feature fusion module to fuse the intermediate features and outputs of the localization module. • We exploit the self-attention mechanism of Transformers in fused features for generating more accurate density maps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
24秒前
creep2020完成签到,获得积分10
26秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
碗碗豆喵完成签到 ,获得积分10
49秒前
50秒前
丹妮完成签到 ,获得积分10
51秒前
1分钟前
英喆完成签到 ,获得积分10
1分钟前
程程发布了新的文献求助10
1分钟前
zhang完成签到 ,获得积分10
1分钟前
Hello应助潇洒自由的铅笔采纳,获得30
1分钟前
北国雪未消完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
李健应助krajicek采纳,获得10
1分钟前
1分钟前
mmyhn举报哲别求助涉嫌违规
1分钟前
Sunny完成签到,获得积分10
1分钟前
雪山飞龙完成签到,获得积分10
1分钟前
NicoLi应助雪山飞龙采纳,获得10
2分钟前
2分钟前
2分钟前
krajicek发布了新的文献求助10
2分钟前
NicoLi应助雪山飞龙采纳,获得10
2分钟前
2分钟前
刘茂甫应助zhang20082418采纳,获得10
2分钟前
浚稚完成签到 ,获得积分10
2分钟前
zhang20082418完成签到,获得积分10
3分钟前
oucedv发布了新的文献求助10
3分钟前
无悔完成签到 ,获得积分10
3分钟前
孟寐以求完成签到 ,获得积分10
3分钟前
4分钟前
大模型应助科研通管家采纳,获得10
4分钟前
Only完成签到 ,获得积分10
4分钟前
woxinyouyou完成签到,获得积分0
5分钟前
5分钟前
zhangguo完成签到 ,获得积分10
5分钟前
Cosmosurfer完成签到,获得积分10
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555803
求助须知:如何正确求助?哪些是违规求助? 3131401
关于积分的说明 9391049
捐赠科研通 2831108
什么是DOI,文献DOI怎么找? 1556372
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890