Spatial and temporal change determined co-occurrence networks stability and community assembly processes of epipelagic seawater microbial community in the Nordic Sea
The Nordic Sea has a vital impact on the global climate change, occupies a significant status in the physical oceanography research, on account of its intersection of complex ocean currents. To explore the influence of seasonal and spatial heterogeneity in its epipelagic seawater on the microbial community structure, a total of 54 seawater samples from 18 stations and 3 water layers (0 m, 50 m, 100 m) were collected in the summer of 2017 and the autumn of 2018 from the Norwegian Sea, the Greenland Sea and the vicinity of Jan Mayen Island in the Nordic Sea. Alpha- and Beta- diversity analysis showed that significant differences were found between characteristic bacterial groups in detached or mixed currents of corresponding seasons, as endemic OTUs with seasonal and ocean current characteristics which revealed the existence of spatiotemporal patterns of microbial communities in the Nordic Sea. Moreover, co-occurrence networks were conducted to show different degree of complexity and stability of microbial community response to spatiotemporal dynamic changes. Furthermore, the flow and collision between ocean currents do have an impact on the community assembly processes by affecting the migration and dispersal of microbial communities. This study reflects the response of microbial communities to the spatiotemporal dynamics and reveals the microbial community assembly mechanisms under complex hydrological condition represented in the Nordic Sea.