Immunoregulatory Neuro-Vascularized Osseointegration Driven by Different Nano-Morphological CaTiO

骨整合 纳米- 材料科学 纳米技术 生物医学工程 医学 复合材料 植入 外科
作者
Dongmei Yu,Zhen Tang,Shusen Bao,Shuo Guo,Changchen Chen,Qi Wu,Mo Wang,Zenghui Zheng,Pengfei Cao,Ben Bin Xu,Hao Wu,Ning Wang,Hai Huang,Chaozong Liu,Xiaokang Li,Zheng Guo
出处
期刊:PubMed 卷期号:: e2404647-e2404647
标识
DOI:10.1002/adhm.202404647
摘要

Up to now, how to implement the optimal regenerative repair of large load-bearing bone defects using artificial bone prosthesis remains to be an enormous challenge in clinical practice. Titanium-based alloys, especially Ti6Al4V, are applied as artificial bone grafts due to their favorable mechanical property and biocompatibility, assisted by personalized customization of 3D-printing to completely match with the bone defect. However, their bioinert peculiarity restricts osteointegration at the interface between bone and titanium-based implants and bone growth into porous titanium-based scaffolds, for lack of bone regeneration with the aid of blood vessels and neural networks. Of note, ample blood delivery and integral innervation are pivotal to the survival of artificially tissue-engineered bones. Herein, the functionalized surface of 3D printed titanium alloy scaffolds driven immunoregulatory neuro-vascularized osseointegration is delved. Bone-like micro/nano morphology and chemical composition of calcium-rich formula are scrutinized to accelerate the process of bone defect repair, including inflammatory response, angiogenesis, neurogenesis, and osseointegration. Micro/nano-topographic calcium titanate (CaTiO3) coating, especially 10%H2O2-Ca, driven immunoregulatory neuro-vascularized osseointegration is validated and its underlying mechanism is attributed to the signaling pathway of TNF-α /oxidative phosphorylation, providing an effective tactic of the bone tissue-engineered scaffold with surface functionalization-driven immunoregulatory neuro-vascularized osseointegration for clinical large segmental bone defects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助Mr_clf采纳,获得10
1秒前
追寻凌晴完成签到,获得积分10
1秒前
Cassie完成签到,获得积分10
1秒前
2秒前
2秒前
靠得住的小仙女完成签到,获得积分10
3秒前
2345应助ZY采纳,获得10
3秒前
jianguo完成签到,获得积分10
3秒前
3秒前
牛牛完成签到,获得积分20
3秒前
honoruru发布了新的文献求助10
3秒前
daheeeee发布了新的文献求助20
4秒前
4秒前
草莓钙片完成签到,获得积分10
5秒前
充电宝应助安静凡旋采纳,获得10
6秒前
7秒前
7秒前
刻苦的亦绿关注了科研通微信公众号
8秒前
8秒前
柠檬加冰发布了新的文献求助10
8秒前
研友_VZG7GZ应助陈橙采纳,获得50
8秒前
程琳发布了新的文献求助10
8秒前
大黄完成签到,获得积分10
9秒前
9秒前
七柱香完成签到,获得积分10
9秒前
10秒前
11秒前
迷路凌柏完成签到 ,获得积分10
11秒前
轻松的冥王星完成签到,获得积分10
11秒前
LFY应助uu采纳,获得10
11秒前
箱子完成签到,获得积分10
11秒前
科研通AI5应助稳重书双采纳,获得10
11秒前
11秒前
充电宝应助顺心迎南采纳,获得10
11秒前
不安红豆发布了新的文献求助10
12秒前
12秒前
庞雅阳完成签到,获得积分10
12秒前
12秒前
科研通AI5应助dmj采纳,获得30
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246