Sky cooling for LED streetlights

发光二极管 天空 环境科学 电子设备和系统的热管理 光电子学 大功率led的热管理 辐射冷却 材料科学 高效能源利用 被动冷却 热的 核工程 工程物理 气象学 物理 电气工程 机械工程 热阻 工程类
作者
Saichao Dang,Hasan H. Almahfoudh,Abdulrahman Alajlan,Hussam Qasem,Jing Wang,Yongfeng Zhu,Osman M. Bakr,Boon S. Ooi,Qiaoqiang Gan
出处
期刊:Light-Science & Applications [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41377-024-01724-7
摘要

Abstract Thermal management is a critical challenge for semiconductor light-emitting diodes (LEDs), as inadequate heat dissipation reduces luminous efficiency and shortens the devices’ lifespan. Thus, there is an urgent need for more effective cooling strategies to enhance the energy efficiency of LEDs. LED streetlights, which operate primarily at night and experience high chip temperatures, could benefit greatly from improved thermal management. In this study, we introduce a sky-facing radiative cooling strategy for outdoor LED streetlights, an innovative yet less explored approach for thermal management of optoelectronics. Our method employs a nanoporous polyethylene (nanoPE) material that possesses both infrared transparency and visible reflectivity. This approach enables the direct release of heat generated by the LED through a sky-facing radiative cooling channel, while also reflecting a significant portion of the light back for illumination. By incorporating nanoPE as a cover for sky-facing LED lights, we achieved a remarkable temperature reduction of 7.8 °C in controlled laboratory settings and 4.4 °C in outdoor environments. These reductions were accompanied by an efficiency improvement of approximately 5% and 4%, respectively. This enhanced efficiency translates into substantial annual energy savings, estimated at 1.9 terawatt-hours when considering the use of LED streetlights in the United States. Furthermore, this electricity saving corresponds to a reduction of approximately 1.3 million metric tons of CO2 emissions, equivalent to 0.03% of the total annual CO2 emissions by the United States in 2018.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lvhuiqi完成签到,获得积分10
1秒前
2秒前
silencemch完成签到,获得积分10
3秒前
NexusExplorer应助123123采纳,获得10
3秒前
共享精神应助啦啦啦采纳,获得10
4秒前
科研通AI5应助早日毕业采纳,获得10
6秒前
7秒前
7秒前
江伊发布了新的文献求助10
7秒前
时间不移民完成签到 ,获得积分10
8秒前
静途完成签到,获得积分10
9秒前
yuyuyu998完成签到,获得积分10
9秒前
赘婿应助行者采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
Emma完成签到,获得积分10
11秒前
jj824完成签到 ,获得积分10
11秒前
科目三应助LEON采纳,获得10
12秒前
hao完成签到,获得积分10
13秒前
94line发布了新的文献求助10
13秒前
15秒前
15秒前
16秒前
卿佑发布了新的文献求助30
16秒前
貔貅发布了新的文献求助10
16秒前
嗯嗯发布了新的文献求助10
16秒前
英俊的铭应助自娱自乐采纳,获得10
17秒前
搜集达人应助hao采纳,获得10
17秒前
18秒前
大模型应助111采纳,获得10
18秒前
19秒前
Ava应助一叶知秋采纳,获得10
20秒前
21秒前
微笑梦旋发布了新的文献求助10
21秒前
今后应助桦辰采纳,获得10
22秒前
22秒前
安容天发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540583
求助须知:如何正确求助?哪些是违规求助? 3117868
关于积分的说明 9332838
捐赠科研通 2815677
什么是DOI,文献DOI怎么找? 1547682
邀请新用户注册赠送积分活动 721099
科研通“疑难数据库(出版商)”最低求助积分说明 712463