A novel velocity discretization for lattice Boltzmann method: Application to compressible flow

物理 格子Boltzmann方法 离散化 压缩性 机械 统计物理学 可压缩流 水电站模型 不可压缩流 流量(数学) 经典力学 数学分析 雷诺数 湍流 数学
作者
Navid Afrasiabian,Colin Denniston
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (3)
标识
DOI:10.1063/5.0255862
摘要

The lattice Boltzmann method (LBM) has emerged as a powerful tool in computational fluid dynamics and materials science. However, due to the failure to accurately reproduce the third moment of the equilibrium distribution function, the standard LBM formulation does not recover the correct compressible Navier–Stokes equations at macroscale. It only recovers Navier–Stokes in the incompressible limit. The errors include terms that destroy Galilean invariance in the presence of density variations. In this paper, we introduce a new velocity discretization method to overcome some of these challenges. In this new formulation, the particle populations are discretized using a bump function that has a mean and a variance. This introduces enough independent degrees of freedom to set the equilibrium moments to the moments of Maxwell–Boltzmann distribution up to and including the third moments. Consequently, the correct macroscopic fluid dynamics equations for compressible fluids are recovered. This new method does neither require introducing ad hoc correction terms or coupling to an extra potential nor significantly alter the implementation. As a result, it is not considerably more complicated or computationally heavy compared to the original LBM but provides a significantly improved hydrodynamics. We validate our method using several benchmark simulations of isothermal compressible flows, including Poiseuille flow, sound wave decay, Couette flow in the presence of a density gradient, and flow over a cylinder. We show that the new formulation restores Galilean Invariance, by comparison to analytical solutions (less than 0.1% mean error), and is capable of capturing flows with large density variations, high Reynolds numbers (∼1000), and Mach numbers near 1.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
捣蛋发布了新的文献求助10
1秒前
1秒前
时光如梭发布了新的文献求助10
1秒前
小助应助无辜的猎豹采纳,获得20
1秒前
ccccchennnnn完成签到,获得积分10
1秒前
小时候发布了新的文献求助10
1秒前
慕青应助HonglinGao采纳,获得10
1秒前
2秒前
小草blue完成签到,获得积分10
4秒前
英俊的铭应助x笑一采纳,获得10
4秒前
谢谢给香蕉发夹的求助进行了留言
5秒前
狼牙月完成签到,获得积分10
5秒前
鹅米豆腐完成签到,获得积分10
6秒前
TK发布了新的文献求助10
6秒前
BIUBIU发布了新的文献求助10
6秒前
顾矜应助mucheng采纳,获得10
6秒前
7秒前
8秒前
害羞听芹完成签到,获得积分10
8秒前
hhhhhh完成签到,获得积分10
8秒前
8秒前
9秒前
cyan完成签到,获得积分10
10秒前
香蕉子骞发布了新的文献求助10
11秒前
阿铭完成签到 ,获得积分10
11秒前
熬夜的桃子完成签到,获得积分10
12秒前
素笺生花发布了新的文献求助10
13秒前
wsy发布了新的文献求助10
14秒前
独享应助捣蛋采纳,获得30
14秒前
萱1988发布了新的文献求助10
15秒前
科研通AI5应助3s采纳,获得10
15秒前
15秒前
15秒前
zing完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
ding应助GH采纳,获得10
17秒前
18秒前
KULI完成签到,获得积分10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
Plant–Pollinator Interactions: From Specialization to Generalization 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589569
求助须知:如何正确求助?哪些是违规求助? 3157863
关于积分的说明 9517794
捐赠科研通 2860923
什么是DOI,文献DOI怎么找? 1572096
邀请新用户注册赠送积分活动 737683
科研通“疑难数据库(出版商)”最低求助积分说明 722502