Mechanically and Chemically Co‐Robust Ni‐Rich Cathodes with Ultrahigh Capacity and Prolonged Cycle Life

材料科学 兴奋剂 阴极 晶界 电化学 容量损失 化学工程 尖晶石 纳米技术 微观结构 复合材料 冶金 电极 化学 光电子学 物理化学 工程类
作者
Bo Wang,Kuo Li,Ge Xu,Zihan Zhang,Xinxin Wang,Jun Sun,Yijun Song,Xuedong Zhang,Yali Liang,Dejie Kong,Yuan Qiu,Qingliang Teng,Xin Cui,Jingzhao Chen,Jun Zhao,Jing Wang,Hui Ying Yang,Jianyu Huang,Yongfu Tang
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/anie.202502725
摘要

Ni‐rich layered oxide (NRLO) materials are considered highly promising cathode for lithium‐ion batteries. However, their practical application is limited by capacity loss and interface instability caused by chemical and mechanical failure during cycling. Doping has been identified as a direct and effective method to address these challenges. However, mechanistic understanding of doping enhanced electrochemical performance is still unclear. In this study, the introduction of high‐valent Nb ions was employed to achieve mechanical‐chemical coupling regulation, thereby concurrently improving the capacity and cycle life of NRLO. First, Nb5+ doping was conducted to refine secondary grains, achieving a "grain refinement" effect similar to that in ceramics and alloys, while further stabilizing the grain boundaries. The inter‐grain fusion structure of NCM811‐0.5Nb effectively dissipates lattice strain under highly delithiated state, suppresses oxygen loss, and prevents cracks that lead to fracture during cycling. Moreover, Nb doping stabilizes the monoclinic phase during phase transitions and promotes the formation of highly stable spinel twin boundaries after cycling. This study demonstrates a comprehensive understanding of the concurrent capacity and stability enhancement mechanisms attributed to Nb‐doping and highlights the significant potential of the synergistic regulation of mechanical and chemical coupling in improving the capacity and lifespan of NRLOs by Nb‐doping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清仔发布了新的文献求助10
刚刚
科研通AI5应助啦啦啦采纳,获得10
刚刚
chancewong完成签到,获得积分20
2秒前
LR发布了新的文献求助20
2秒前
3秒前
所所应助wanz采纳,获得30
4秒前
4秒前
qx发布了新的文献求助30
4秒前
6秒前
超超完成签到,获得积分10
9秒前
9秒前
科目三应助摩根采纳,获得10
10秒前
10秒前
陈小花发布了新的文献求助10
11秒前
12秒前
12秒前
大模型应助妥妥酱采纳,获得50
13秒前
14秒前
15秒前
Ava应助meng采纳,获得10
16秒前
华仔应助涔雨采纳,获得30
17秒前
17秒前
陈宛婷完成签到,获得积分10
18秒前
18秒前
18秒前
hfdfffcc发布了新的文献求助10
19秒前
jsyfanature发布了新的文献求助10
19秒前
66发布了新的文献求助10
19秒前
脑洞疼应助俊逸的代曼采纳,获得10
20秒前
小思怡发布了新的文献求助10
21秒前
Cloud_L发布了新的文献求助30
21秒前
dbhya发布了新的文献求助10
22秒前
22秒前
24秒前
bkagyin应助钟钟钟采纳,获得10
25秒前
25秒前
聪明山芙发布了新的文献求助10
27秒前
28秒前
28秒前
深情安青应助早日发SCI采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745678
求助须知:如何正确求助?哪些是违规求助? 3288630
关于积分的说明 10059868
捐赠科研通 3004874
什么是DOI,文献DOI怎么找? 1649899
邀请新用户注册赠送积分活动 785612
科研通“疑难数据库(出版商)”最低求助积分说明 751180