Consensus reaching for ordinal classification-based group decision making with heterogeneous preference information

群体决策 偏爱 计算机科学 群(周期表) 运筹学 人工智能 序数数据 信息技术 有序优化 信息和通信技术 机器学习 数据挖掘 知识管理 管理科学 统计 数学 心理学 万维网 经济 社会心理学 有机化学 化学 操作系统
作者
Zhuolin Li,Zhen Zhang,Wenyu Yu
出处
期刊:Journal of the Operational Research Society [Informa]
卷期号:75 (2): 224-245 被引量:38
标识
DOI:10.1080/01605682.2023.2186806
摘要

AbstractAbstractIn group decision making (GDM), there may exist some problems that need to assign alternatives to some predefined ordered categories, which are called ordinal classification-based GDM problems. To obtain classification results that can be accepted by most decision makers (DMs), it is necessary to implement a consensus reaching process for ordinal classification-based GDM problems. In this paper, we study consensus reaching models for a new type of ordinal classification-based GDM problem, in which DMs do not provide criteria weights and category cardinalities but provide indirect and imprecise heterogeneous preference information. To do so, a consistency verification method is first proposed to check whether each DM’s preference information is consistent and then a minimum adjustment optimization model is developed to modify DMs’ inconsistent preference information. Afterwards, we establish some optimization models to obtain each DM’s possible categories for alternatives. Followed by this, we define the consensus levels of DMs and devise some optimization models to assist DMs in adjusting alternatives’ classification results and DMs’ preference information at the same time. Furthermore, a maximum support degree-based method is provided to determine the consensual classification result for alternatives. Finally, a numerical application and some sensitivity analysis are provided to justify the proposed models.Keywords: Decision analysisgroup decision makingmulti-criteriaconsensus reaching processordinal classification Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was partly supported by the National Natural Science Foundation of China (NSFC) under Grant 71971039 and the Key Program of the NSFC under Grant 71731003.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
洛洛发布了新的文献求助30
2秒前
3秒前
3秒前
lisa0612发布了新的文献求助10
3秒前
壮观问寒应助laohu采纳,获得10
4秒前
TWO宝发布了新的文献求助10
5秒前
qu完成签到 ,获得积分20
5秒前
111发布了新的文献求助10
6秒前
6秒前
ZC发布了新的文献求助20
6秒前
lily完成签到,获得积分10
6秒前
辛勤的掏粪工完成签到,获得积分10
7秒前
josy应助学术妙蛙种子采纳,获得10
9秒前
诚心雁丝发布了新的文献求助10
10秒前
14秒前
吉吉完成签到 ,获得积分10
16秒前
17秒前
曹great发布了新的文献求助10
18秒前
WQR完成签到,获得积分10
18秒前
赘婿应助柠小檬c采纳,获得30
18秒前
畅快逊发布了新的文献求助10
19秒前
梁超完成签到,获得积分10
20秒前
乐乐应助qu采纳,获得10
21秒前
研友_r8YKvn发布了新的文献求助10
22秒前
方羽应助专注宛凝采纳,获得20
22秒前
22秒前
24秒前
24秒前
26秒前
汎影发布了新的文献求助10
27秒前
李爱国应助leyellows采纳,获得10
28秒前
bc夹心发布了新的文献求助10
29秒前
天天快乐应助畅快逊采纳,获得10
29秒前
30秒前
josy应助学术妙蛙种子采纳,获得10
34秒前
35秒前
深情安青应助lisa0612采纳,获得20
35秒前
鸭鸭完成签到,获得积分10
37秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387466
求助须知:如何正确求助?哪些是违规求助? 3000207
关于积分的说明 8789936
捐赠科研通 2686116
什么是DOI,文献DOI怎么找? 1471475
科研通“疑难数据库(出版商)”最低求助积分说明 680302
邀请新用户注册赠送积分活动 673072