Optimizing Spaced Repetition Schedule by Capturing the Dynamics of Memory

计算机科学 重复(修辞手法) 地铁列车时刻表 记忆 水准点(测量) 不可用 人工智能 大地测量学 数学 语言学 操作系统 工程类 哲学 数学教育 可靠性工程 地理
作者
Jingyong Su,Junyao Ye,Liqiang Nie,Yilong Cao,Yongyong Chen
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (10): 10085-10097 被引量:5
标识
DOI:10.1109/tkde.2023.3251721
摘要

Spaced repetition, namely, learners review items in a given schedule, has been proven powerful for memorization and practice of skills. Most current spaced repetition methods focus on either predicting student recall or designing an optimal review schedule, thus omitting the integrity of the spaced repetition system. In this work, we propose a novel spaced repetition schedule framework by capturing the dynamics of memory, which alternates memory prediction and schedule optimization to improve the efficiency of learners' reviews. First, the framework collects logs from students' reviews and builds memory models with Markov property to capture the dynamics of memory. Then, the spaced repetition optimization is transformed a stochastic shortest path problem and solved via the value iteration method. We also construct a new benchmark dataset for spaced repetition, which is the first to contain time-series information during learners' memorization. Experimental results on the collected data from the real world and the simulated environment demonstrate that the proposed approach reduces 64% error and 17% cost in predicting recall rates and optimizing schedules compared to several baselines. We have publicly released the dataset containing 220 million rows and codes used in this paper at: https://github.com/maimemo/SSP-MMC-Plus .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
梦灵发布了新的文献求助10
3秒前
晓湫完成签到,获得积分10
4秒前
整齐谷芹发布了新的文献求助10
6秒前
晓湫发布了新的文献求助20
8秒前
小宇子完成签到 ,获得积分10
9秒前
327发布了新的文献求助10
10秒前
盼人怜完成签到,获得积分10
14秒前
00完成签到 ,获得积分10
15秒前
风清扬应助陈三三采纳,获得30
15秒前
量子星尘发布了新的文献求助10
21秒前
心静听炊烟完成签到 ,获得积分10
21秒前
欢呼的凌兰完成签到,获得积分10
22秒前
华仔应助科研通管家采纳,获得30
23秒前
23秒前
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
tuanhust应助科研通管家采纳,获得20
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
共享精神应助stepha采纳,获得10
27秒前
CipherSage应助不安的依风采纳,获得10
27秒前
licheng完成签到,获得积分10
28秒前
29秒前
29秒前
俭朴青烟发布了新的文献求助10
29秒前
整齐谷芹完成签到,获得积分10
30秒前
sdbz001完成签到,获得积分0
33秒前
伏城完成签到 ,获得积分10
33秒前
wz完成签到 ,获得积分10
33秒前
34秒前
35秒前
橙子完成签到,获得积分10
36秒前
36秒前
达达完成签到,获得积分10
36秒前
畅快的乐巧完成签到,获得积分10
39秒前
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958114
求助须知:如何正确求助?哪些是违规求助? 3504298
关于积分的说明 11117743
捐赠科研通 3235614
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547