Intra-annual variation in the attribution of runoff evolution in the Yellow River source area

地表径流 大洪水 水文学(农业) 气候变化 环境科学 降水 地质学 流域 径流曲线数 生长季节 地理 生态学 岩土工程 气象学 生物 地图学 考古
作者
Yongxin Ni,Xizhi Lv,Zhongbo Yu,Jianwei Wang,Li Ma,Qiufen Zhang
出处
期刊:Catena [Elsevier]
卷期号:225: 107032-107032 被引量:20
标识
DOI:10.1016/j.catena.2023.107032
摘要

Accurately understanding the intra-annual variation in runoff evolution attribution is essential for basin-scale water resources management. In this study, the runoff in the Yellow River source area was divided into two intra-annual time scales: flood season, non-flood season and spring, summer, autumn and winter, and the sensitivity and attribution differences of runoff changes in the Yellow River source area at different intra-annual time scales were quantitatively assessed based on the time-varying Budyko framework. Results show that the runoff in the Yellow River source area decreases during the flood season and spring, summer and autumn, and increases during the non-flood season and winter from 1960 to 2020, with an insignificant decreasing trend in annual runoff. Flood season and autumn runoff changes are the main reasons for the reduction in annual runoff. Runoff in the Yellow River source area is most sensitive to the underlying surface such as vegetation and soil freeze–thaw change, and in terms of climate change, non-flood season and autumn runoff is more sensitive to changes in precipitation, while flood season and summer runoff is more sensitive to changes in potential evaporation. The underlying surface change is the dominant factor for annual runoff change. And for the intra-annual runoff change, the non-flood season, spring and winter runoff in the Yellow River source area is dominated by the underlying surface change, and flood season, summer and autumn runoff is dominated by the climate change. These findings can provide theoretical support for the scientific response to environmental change and the enhancement of water conservation capacity in the Yellow River source area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
刚刚
joanna0932完成签到,获得积分10
刚刚
坚定亦竹完成签到,获得积分10
1秒前
mia完成签到,获得积分20
1秒前
1秒前
1秒前
CodeCraft应助zxx5012采纳,获得10
1秒前
3秒前
paparazzi221发布了新的文献求助10
3秒前
笑点低的大有完成签到 ,获得积分10
4秒前
孔小白发布了新的文献求助10
5秒前
5秒前
stephanie96发布了新的文献求助10
5秒前
Millie发布了新的文献求助10
6秒前
duxinyue应助sunzhiyu233采纳,获得10
6秒前
7秒前
喜悦夏之发布了新的文献求助10
8秒前
Chloe完成签到,获得积分10
8秒前
Kite完成签到,获得积分10
8秒前
JamesPei应助ZH的天方夜谭采纳,获得10
8秒前
晓峰完成签到,获得积分10
9秒前
xiao完成签到 ,获得积分10
9秒前
9秒前
11秒前
Ayu完成签到,获得积分10
11秒前
yale发布了新的文献求助10
11秒前
11秒前
Driscoll完成签到 ,获得积分10
13秒前
喜悦夏之完成签到,获得积分10
13秒前
13秒前
yatou5651发布了新的文献求助10
13秒前
15秒前
汉关发布了新的文献求助10
16秒前
¥¥¥¥¥¥¥¥完成签到 ,获得积分10
16秒前
XXF发布了新的文献求助10
16秒前
zrz发布了新的文献求助10
17秒前
17秒前
17秒前
田様应助BaekHyun采纳,获得10
19秒前
peng发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808