铁磁性
材料科学
凝聚态物理
自旋电子学
碲
铬
纹理(宇宙学)
磁电阻
磁场
物理
冶金
计算机科学
量子力学
人工智能
图像(数学)
作者
Yao Wen,Shiheng Liang,Dong Zhou,Ruiqing Cheng,Lei Yin,Peng He,Hao Wang,Baoxing Zhai,Yang Zhao,Wendi Li,Jian Jiang,Zhongwei Li,Chuansheng Liu,Kaifeng Dong,Jun He,Kai Zhang
标识
DOI:10.1002/adma.202209346
摘要
2D ferromagnetic chromium tellurides exhibit intriguing spin configurations and high-temperature intrinsic ferromagnetism, providing unprecedented opportunities to explore the fundamental spin physics and build spintronic devices. Here, a generic van der Waals epitaxial approach is developed to synthesize the 2D ternary chromium tellurium compounds with thicknesses down to mono-, bi-, tri-, and few-unit cells (UC). The Mn0.14 Cr0.86 Te evolves from intrinsic ferromagnetic behavior in bi-UC, tri-UC, and few-UC to temperature-induced ferrimagnetic behavior as the thickness increases, resulting in a sign reversal of the anomalous Hall resistance. Temperature- and thickness-tunable labyrinthine-domain ferromagnetic behaviors are derived from the dipolar interactions in Fe0.26 Cr0.74 Te and Co0.40 Cr0.60 Te. Furthermore, the dipolar-interaction-induced stripe domain and field-induced domain wall (DW) motion velocity are studied, and multibit data storage is realized through an abundant DW state. The magnetic storage can function in neuromorphic computing tasks, and the pattern recognition accuracy can reach up to 97.93%, which is similar to the recognition accuracy of ideal software-based training (98.28%). Room-temperature ferromagnetic chromium tellurium compounds with intriguing spin configurations can significantly promote the exploration of the processing, sensing, and storage based on 2D magnetic systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI