数学
分数阶微积分
衍生工具(金融)
插值(计算机图形学)
订单(交换)
数学分析
应用数学
物理
财务
经典力学
运动(物理)
金融经济学
经济
作者
Xuan Zhao,Zhi‐zhong Sun
出处
期刊:De Gruyter eBooks
[De Gruyter]
日期:2019-03-30
卷期号:: 23-48
被引量:1
标识
DOI:10.1515/9783110571684-002
摘要
The definitions of the fractional integral, Grünwald-Letnikov fractional derivative, Riemann-Liouville fractional derivative, and Caputo fractional derivative are presented. The numerical approximations for the Riemann-Liouville fractional derivative based on the shifted Grünwald-Letnikov formula are provided. The L1 interpolation approximation and L2-1σ interpolation approximation for the Caputo fractional derivative are given. The finite difference methods based on Grünwald-Letnikov formula, L1 formula and L2-1σ formula for the fractional ordinary equation are derived. Four finite difference schemes based on the first-order Grünwald-Letnikov formula, the second-order shifted Grünwald-Letnikov formula, the L1 formula and the L2-1σ formula are constructed for the time-fractional subdiffusion equations. Two difference schemes by using the L1 formula and the L2-1σ formula are developed for the time-fractional diffusion-wave equations. For each scheme, the convergence result is given.
科研通智能强力驱动
Strongly Powered by AbleSci AI