超级电容器
硫化钴
镍
钴
硫化镍
硫化物
材料科学
离子交换
无机化学
微波食品加热
离子
化学工程
化学
电极
电化学
冶金
计算机科学
有机化学
电信
工程类
物理化学
作者
Souleymen Rafai,Qiao Chen,Muhammad Naveed,Zhitao Wang,Waqar Younas,Syed Khalid,Chuanbao Cao
标识
DOI:10.1016/j.cej.2019.01.059
摘要
The emergence of graphene-like 2D nanostructures has stimulated tremendous attention due to their fascinating physicochemical properties and promising applications in the field of energy conversion and storage. Herein, we report a gram-scale synthesis of non-layered ultrathin CoNi2S4 nanosheets via microwave-assisted liquid-phase growth of layered double hydroxide precursor poste-sulfurized at room-temperature, the method is time-saving and scalable for massive production. The CoNi2S4 nanosheets exhibit a micron-sized planar area, ultrathin thickness (∼2 nm) and mesoporous feature. When loaded on flexible carbon cloth for electrochemical capacitor, the CoNi2S4 nanosheets deliver a high specific capacitance of 247 mAh g−1 at 8 A g−1 with an excellent rate capability of 91% from 1 to 20 A g−1. Remarkably, as a positive electrode material for hybrid supercapacitor, CoNi2S4 nanosheets demonstrate excellent electrochemical performances with a high energy density of 67.7 Wh kg−1 at a power density of 0.8 kW kg−1. Even at an extreme power density of 9.6 kW kg−1, the energy density is still as high as 50.6 Wh kg−1 with a robust long-term cycling stability up to 10,000 cycles. Such results are among the best even superior to those reported for nickel-cobalt-sulfide-based materials used as positive electrode for hybrid supercapacitors.
科研通智能强力驱动
Strongly Powered by AbleSci AI