A Greedy Assist-as-Needed Controller for Upper Limb Rehabilitation

任务(项目管理) 康复 控制器(灌溉) 计算机科学 物理医学与康复 控制(管理) 人工智能 功能(生物学) 心理学 物理疗法 医学 工程类 农学 进化生物学 生物 系统工程
作者
Lincong Luo,Liang Peng,Chen Wang,Zeng-Guang Hou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:30 (11): 3433-3443 被引量:41
标识
DOI:10.1109/tnnls.2019.2892157
摘要

Previous studies on robotic rehabilitation have shown that subjects' active participation and effort involved in rehabilitation training can promote the performance of therapies. In order to improve the voluntary effort of participants during the rehabilitation training, assist-as-needed (AAN) control strategies regulating the robotic assistance according to subjects' performance and conditions have been developed. Unfortunately, the heterogeneity of patients' motor function capability in task space is not taken into account during the implementation of these controllers. In this paper, a new scheme called greedy AAN (GAAN) controller is designed for the upper limb rehabilitation training of neurologically impaired subjects. The proposed GAAN control paradigm includes a baseline controller and a Gaussian RBF network that is utilized to model the functional capability of subjects and to provide corresponding a task challenge for them. In order to avoid subjects' slacking and encourage their active engagement, the weight vectors of RBF networks evaluating subjects' impairment level are updated based on a greedy strategy that makes the networks progressively learn the maximum forces over time provided by subjects. Simultaneously, a challenge level modification algorithm is employed to adjust the task challenge according to the task performance of subjects. Experiments on 12 subjects with neurological impairment are conducted to validate the performance and feasibility of the GAAN controller. The results show that the proposed GAAN controller has significant potential to promote the subjects' voluntary engagement during training exercises.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小酸奶完成签到,获得积分10
1秒前
小饼饼完成签到,获得积分10
1秒前
1秒前
chen完成签到,获得积分10
2秒前
杳子尧发布了新的文献求助10
2秒前
3秒前
3秒前
vikey完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
研友_8R716L发布了新的文献求助10
4秒前
路宝发布了新的文献求助10
4秒前
5秒前
5秒前
电池搬砖工完成签到 ,获得积分10
5秒前
布饭a完成签到 ,获得积分10
5秒前
hkh发布了新的文献求助10
7秒前
ardejiang发布了新的文献求助10
7秒前
CCCr发布了新的文献求助10
8秒前
张紫薇发布了新的文献求助10
8秒前
张达发布了新的文献求助10
9秒前
乐乐应助MJ采纳,获得10
9秒前
dududu发布了新的文献求助10
9秒前
zc发布了新的文献求助10
9秒前
小小完成签到,获得积分10
9秒前
断章完成签到 ,获得积分10
10秒前
研友_WnqdrL发布了新的文献求助10
10秒前
木又权完成签到,获得积分10
11秒前
赘婿应助杳子尧采纳,获得10
11秒前
11秒前
zp完成签到,获得积分10
12秒前
852应助杨思睿采纳,获得10
12秒前
13秒前
悦耳的滑板完成签到,获得积分10
13秒前
13秒前
p13508397190完成签到,获得积分10
15秒前
共享精神应助举世无双梨采纳,获得10
15秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
Development and Industrialization of Stereoregular Polynorbornenes 500
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3418730
求助须知:如何正确求助?哪些是违规求助? 3020170
关于积分的说明 8891341
捐赠科研通 2707637
什么是DOI,文献DOI怎么找? 1484879
科研通“疑难数据库(出版商)”最低求助积分说明 686213
邀请新用户注册赠送积分活动 681404