间歇控制
同步(交流)
控制理论(社会学)
随机神经网络
人工神经网络
离散时间和连续时间
微分包含
计算机科学
随机微分方程
数学
李雅普诺夫函数
控制(管理)
指数函数
应用数学
循环神经网络
数学优化
拓扑(电路)
非线性系统
控制工程
数学分析
工程类
人工智能
统计
物理
量子力学
组合数学
作者
Yongbao Wu,Jilin Zhu,Wenxue Li
标识
DOI:10.1109/tcyb.2019.2930579
摘要
In this paper, to investigate the exponential synchronization of stochastic neural networks, a new periodically intermittent discrete observation control (PIDOC) is first proposed. Different from the existing periodically intermittent control, our control in control time is feedback control based on discrete-time state observations (FCDSOs) instead of a continuous-time one. By employing the Lyapunov method, graph theory, and theory of differential inclusions, the exponential synchronization of stochastic neural networks with a discontinuous right-hand side is realized by PIDOC and some sufficient conditions are presented. Especially, when control width tends to control period, PIDOC will be reduced to a general FCDSO and we give some detailed discussions. Then, we provide some corollaries about synchronization in mean square, asymptotical synchronization in mean square, and exponential synchronization of stochastic neural networks under FCDSO. Finally, some numerical simulations are provided to demonstrate our analytical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI