物候学
气候变化
生态系统
环境科学
生态学
全球变暖
全球变化
气候学
生物
地质学
作者
Shilong Piao,Qiang Liu,Anping Chen,Ivan A. Janssens,Yongshuo H. Fu,Junhu Dai,Lingli Liu,Xu Lian,Miaogen Shen,Xiaolin Zhu
摘要
Abstract Plant phenology, the annually recurring sequence of plant developmental stages, is important for plant functioning and ecosystem services and their biophysical and biogeochemical feedbacks to the climate system. Plant phenology depends on temperature, and the current rapid climate change has revived interest in understanding and modeling the responses of plant phenology to the warming trend and the consequences thereof for ecosystems. Here, we review recent progresses in plant phenology and its interactions with climate change. Focusing on the start (leaf unfolding) and end (leaf coloring) of plant growing seasons, we show that the recent rapid expansion in ground‐ and remote sensing‐ based phenology data acquisition has been highly beneficial and has supported major advances in plant phenology research. Studies using multiple data sources and methods generally agree on the trends of advanced leaf unfolding and delayed leaf coloring due to climate change, yet these trends appear to have decelerated or even reversed in recent years. Our understanding of the mechanisms underlying the plant phenology responses to climate warming is still limited. The interactions between multiple drivers complicate the modeling and prediction of plant phenology changes. Furthermore, changes in plant phenology have important implications for ecosystem carbon cycles and ecosystem feedbacks to climate, yet the quantification of such impacts remains challenging. We suggest that future studies should primarily focus on using new observation tools to improve the understanding of tropical plant phenology, on improving process‐based phenology modeling, and on the scaling of phenology from species to landscape‐level.
科研通智能强力驱动
Strongly Powered by AbleSci AI