Single MR image super-resolution via channel splitting and serial fusion network

计算机科学 人工智能 特征(语言学) 架空(工程) 图像(数学) 模式识别(心理学) 图像融合 人工神经网络 计算机视觉 图像分辨率
作者
Xiaole Zhao,Huali Zhang,Hangfei Liu,Yun Qin,Tao Zhang,Xueming Zou
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:: 108669-108669 被引量:4
标识
DOI:10.1016/j.knosys.2022.108669
摘要

In magnetic resonance imaging (MRI), spatial resolution is an important and critical imaging parameter that represents how much information is contained in a unit space. Acquiring high-resolution MRI data usually takes a long scanning time and is subject to motion artifacts due to hardware, physical, and physiological limitations. Single image super-resolution (SISR) based on deep learning is an effective and promising alternative technique to improve the native spatial resolution of magnetic resonance (MR) images. However, because of the simple diversity and single distribution of training samples, the effective training of deep models with medical training samples and improvement of the tradeoff between model performance and computing overhead are major challenges. In addition, deeper networks are more difficult to effectively train since the information is gradually weakened as the network deepens. In this paper, a novel channel splitting and serial fusion network (CSSFN) is presented for single MR image super-resolution. The proposed CSSFN splits hierarchical features into a series of subfeatures, which are then integrated together in a serial manner. Hence, the network becomes deeper and can discriminatively and reasonably deal with the subfeatures. Moreover, a dense global feature fusion (DGFF) is adopted to integrate the intermediate features, which further promotes the information flow in the network and helps to stabilize model training. Extensive experiments on several typical MR images show the superiority of our CSSFN models to other advanced SISR methods. • The compromise between model performance and computational overhead for MR image SR is improved by introducing a novel Serial Local Feature Fusion (SLFF) strategy. • We ease the dilemma between the trainability and network scale caused by the degradation of MR training samples. • Through pseudo 3D experiments, we confirm the speculation that degraded training samples are more likely to cause the fitting problem of large-scale deep models. • Aggressive channel splitting will exacerbate the problem of model fitting though it initially helps to reduce the risk of over-/under-fitting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小明应助彩色的若南采纳,获得10
刚刚
李健的小迷弟应助岳元满采纳,获得10
1秒前
1秒前
lifang发布了新的文献求助10
2秒前
2秒前
浮游应助xhz采纳,获得10
2秒前
111发布了新的文献求助10
3秒前
xc完成签到,获得积分20
3秒前
4秒前
cheng完成签到,获得积分10
5秒前
5秒前
6秒前
一投就中发布了新的文献求助10
7秒前
刘柳发布了新的文献求助10
7秒前
顺利的蛋挞关注了科研通微信公众号
8秒前
Juvianne发布了新的文献求助10
9秒前
9秒前
9秒前
无辜的丹雪应助惠1采纳,获得30
10秒前
10秒前
CipherSage应助111采纳,获得10
11秒前
Owen应助111采纳,获得10
11秒前
甜蜜寄文发布了新的文献求助10
11秒前
11秒前
guangshuang发布了新的文献求助10
12秒前
慕青应助xc采纳,获得30
12秒前
韩修杰发布了新的文献求助10
13秒前
13秒前
lyl发布了新的文献求助10
14秒前
14秒前
coin完成签到,获得积分10
14秒前
呆一起完成签到,获得积分10
15秒前
15秒前
Hiiiiii完成签到,获得积分10
15秒前
15秒前
15秒前
SciGPT应助聪慧若风采纳,获得10
15秒前
16秒前
zwl发布了新的文献求助10
17秒前
朴素剑心发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901