Single MR image super-resolution via channel splitting and serial fusion network

计算机科学 人工智能 特征(语言学) 架空(工程) 图像(数学) 模式识别(心理学) 图像融合 人工神经网络 计算机视觉 图像分辨率
作者
Xiaole Zhao,Huali Zhang,Hangfei Liu,Yun Qin,Tao Zhang,Xueming Zou
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:: 108669-108669 被引量:4
标识
DOI:10.1016/j.knosys.2022.108669
摘要

In magnetic resonance imaging (MRI), spatial resolution is an important and critical imaging parameter that represents how much information is contained in a unit space. Acquiring high-resolution MRI data usually takes a long scanning time and is subject to motion artifacts due to hardware, physical, and physiological limitations. Single image super-resolution (SISR) based on deep learning is an effective and promising alternative technique to improve the native spatial resolution of magnetic resonance (MR) images. However, because of the simple diversity and single distribution of training samples, the effective training of deep models with medical training samples and improvement of the tradeoff between model performance and computing overhead are major challenges. In addition, deeper networks are more difficult to effectively train since the information is gradually weakened as the network deepens. In this paper, a novel channel splitting and serial fusion network (CSSFN) is presented for single MR image super-resolution. The proposed CSSFN splits hierarchical features into a series of subfeatures, which are then integrated together in a serial manner. Hence, the network becomes deeper and can discriminatively and reasonably deal with the subfeatures. Moreover, a dense global feature fusion (DGFF) is adopted to integrate the intermediate features, which further promotes the information flow in the network and helps to stabilize model training. Extensive experiments on several typical MR images show the superiority of our CSSFN models to other advanced SISR methods. • The compromise between model performance and computational overhead for MR image SR is improved by introducing a novel Serial Local Feature Fusion (SLFF) strategy. • We ease the dilemma between the trainability and network scale caused by the degradation of MR training samples. • Through pseudo 3D experiments, we confirm the speculation that degraded training samples are more likely to cause the fitting problem of large-scale deep models. • Aggressive channel splitting will exacerbate the problem of model fitting though it initially helps to reduce the risk of over-/under-fitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助lishunzcqty采纳,获得10
1秒前
1秒前
ML完成签到,获得积分10
1秒前
今后应助Maxpan采纳,获得10
2秒前
科目三应助江十三采纳,获得10
2秒前
咸鱼之王发布了新的文献求助10
2秒前
俊逸尔风完成签到 ,获得积分10
4秒前
含糊的小松鼠完成签到 ,获得积分10
5秒前
小章子冰箱完成签到,获得积分10
5秒前
6秒前
Leo发布了新的文献求助10
6秒前
雨泽发布了新的文献求助10
6秒前
7秒前
7秒前
gzhatsb应助Ly采纳,获得10
8秒前
gzhatsb应助彪壮的绮烟采纳,获得10
9秒前
Lucas应助charles采纳,获得20
9秒前
子车茗应助Camellia采纳,获得30
9秒前
123456qi完成签到,获得积分10
10秒前
summer完成签到 ,获得积分0
10秒前
小人物完成签到,获得积分10
10秒前
小钱钱发布了新的文献求助10
11秒前
11秒前
JamesPei应助junhan采纳,获得10
12秒前
甘氨酸完成签到,获得积分0
12秒前
haveatry发布了新的文献求助30
12秒前
12秒前
机灵的芷波完成签到 ,获得积分10
13秒前
Lisa完成签到,获得积分20
13秒前
14秒前
陈圈圈发布了新的文献求助20
14秒前
14秒前
Leo完成签到,获得积分10
14秒前
picapica668完成签到,获得积分10
15秒前
三番又六次完成签到 ,获得积分10
15秒前
16秒前
打打应助ymu采纳,获得10
16秒前
neilphilosci完成签到 ,获得积分10
17秒前
折木应助朴风捉莹采纳,获得10
17秒前
17秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262316
求助须知:如何正确求助?哪些是违规求助? 2902952
关于积分的说明 8323591
捐赠科研通 2572983
什么是DOI,文献DOI怎么找? 1398026
科研通“疑难数据库(出版商)”最低求助积分说明 653970
邀请新用户注册赠送积分活动 632568