Single MR image super-resolution via channel splitting and serial fusion network

计算机科学 人工智能 特征(语言学) 架空(工程) 图像(数学) 模式识别(心理学) 图像融合 人工神经网络 计算机视觉 图像分辨率
作者
Xiaole Zhao,Huali Zhang,Hangfei Liu,Yun Qin,Tao Zhang,Xueming Zou
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:: 108669-108669 被引量:4
标识
DOI:10.1016/j.knosys.2022.108669
摘要

In magnetic resonance imaging (MRI), spatial resolution is an important and critical imaging parameter that represents how much information is contained in a unit space. Acquiring high-resolution MRI data usually takes a long scanning time and is subject to motion artifacts due to hardware, physical, and physiological limitations. Single image super-resolution (SISR) based on deep learning is an effective and promising alternative technique to improve the native spatial resolution of magnetic resonance (MR) images. However, because of the simple diversity and single distribution of training samples, the effective training of deep models with medical training samples and improvement of the tradeoff between model performance and computing overhead are major challenges. In addition, deeper networks are more difficult to effectively train since the information is gradually weakened as the network deepens. In this paper, a novel channel splitting and serial fusion network (CSSFN) is presented for single MR image super-resolution. The proposed CSSFN splits hierarchical features into a series of subfeatures, which are then integrated together in a serial manner. Hence, the network becomes deeper and can discriminatively and reasonably deal with the subfeatures. Moreover, a dense global feature fusion (DGFF) is adopted to integrate the intermediate features, which further promotes the information flow in the network and helps to stabilize model training. Extensive experiments on several typical MR images show the superiority of our CSSFN models to other advanced SISR methods. • The compromise between model performance and computational overhead for MR image SR is improved by introducing a novel Serial Local Feature Fusion (SLFF) strategy. • We ease the dilemma between the trainability and network scale caused by the degradation of MR training samples. • Through pseudo 3D experiments, we confirm the speculation that degraded training samples are more likely to cause the fitting problem of large-scale deep models. • Aggressive channel splitting will exacerbate the problem of model fitting though it initially helps to reduce the risk of over-/under-fitting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刀剑发布了新的文献求助10
2秒前
3秒前
3秒前
小二郎应助积极的夏天采纳,获得30
5秒前
123发布了新的文献求助10
7秒前
7秒前
9秒前
shaohua2011发布了新的文献求助10
9秒前
22222发布了新的文献求助10
10秒前
Charon发布了新的文献求助10
13秒前
桐桐应助ray采纳,获得10
13秒前
15秒前
qq完成签到 ,获得积分10
19秒前
哈哈哈完成签到 ,获得积分10
19秒前
20秒前
一颗蘑古力完成签到 ,获得积分10
23秒前
落尘完成签到 ,获得积分10
27秒前
27秒前
wwb发布了新的文献求助10
28秒前
28秒前
bobo发布了新的文献求助10
28秒前
29秒前
希望天下0贩的0应助刘丰采纳,获得10
29秒前
脑洞疼应助单纯的爆米花采纳,获得10
30秒前
30秒前
Lifel发布了新的文献求助10
32秒前
素雅发布了新的文献求助10
34秒前
35秒前
37秒前
39秒前
wwb完成签到,获得积分10
40秒前
一壶古酒应助wanglihong采纳,获得60
41秒前
41秒前
coster发布了新的文献求助10
42秒前
42秒前
玄轩发布了新的文献求助10
43秒前
44秒前
踏实的道消完成签到 ,获得积分10
46秒前
lfl发布了新的文献求助10
47秒前
刘丰发布了新的文献求助10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558034
求助须知:如何正确求助?哪些是违规求助? 4642985
关于积分的说明 14670251
捐赠科研通 4584484
什么是DOI,文献DOI怎么找? 2514893
邀请新用户注册赠送积分活动 1489026
关于科研通互助平台的介绍 1459655