Single MR image super-resolution via channel splitting and serial fusion network

计算机科学 人工智能 特征(语言学) 架空(工程) 图像(数学) 模式识别(心理学) 图像融合 人工神经网络 计算机视觉 图像分辨率
作者
Xiaole Zhao,Huali Zhang,Hangfei Liu,Yun Qin,Tao Zhang,Xueming Zou
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:: 108669-108669 被引量:4
标识
DOI:10.1016/j.knosys.2022.108669
摘要

In magnetic resonance imaging (MRI), spatial resolution is an important and critical imaging parameter that represents how much information is contained in a unit space. Acquiring high-resolution MRI data usually takes a long scanning time and is subject to motion artifacts due to hardware, physical, and physiological limitations. Single image super-resolution (SISR) based on deep learning is an effective and promising alternative technique to improve the native spatial resolution of magnetic resonance (MR) images. However, because of the simple diversity and single distribution of training samples, the effective training of deep models with medical training samples and improvement of the tradeoff between model performance and computing overhead are major challenges. In addition, deeper networks are more difficult to effectively train since the information is gradually weakened as the network deepens. In this paper, a novel channel splitting and serial fusion network (CSSFN) is presented for single MR image super-resolution. The proposed CSSFN splits hierarchical features into a series of subfeatures, which are then integrated together in a serial manner. Hence, the network becomes deeper and can discriminatively and reasonably deal with the subfeatures. Moreover, a dense global feature fusion (DGFF) is adopted to integrate the intermediate features, which further promotes the information flow in the network and helps to stabilize model training. Extensive experiments on several typical MR images show the superiority of our CSSFN models to other advanced SISR methods. • The compromise between model performance and computational overhead for MR image SR is improved by introducing a novel Serial Local Feature Fusion (SLFF) strategy. • We ease the dilemma between the trainability and network scale caused by the degradation of MR training samples. • Through pseudo 3D experiments, we confirm the speculation that degraded training samples are more likely to cause the fitting problem of large-scale deep models. • Aggressive channel splitting will exacerbate the problem of model fitting though it initially helps to reduce the risk of over-/under-fitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZGVzn完成签到,获得积分10
6秒前
maxthon完成签到,获得积分10
10秒前
热心市民完成签到 ,获得积分10
11秒前
cocofan完成签到 ,获得积分10
13秒前
JN完成签到,获得积分10
17秒前
苏苏爱学习完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
xzy998应助科研通管家采纳,获得10
24秒前
温暖冬日完成签到,获得积分10
27秒前
北国雪未消完成签到 ,获得积分10
28秒前
xumq完成签到,获得积分10
29秒前
无极2023完成签到 ,获得积分0
32秒前
xumq发布了新的文献求助10
33秒前
David完成签到 ,获得积分10
33秒前
祝你勇敢完成签到 ,获得积分10
35秒前
韭黄发布了新的文献求助10
36秒前
FBQZDJG2122完成签到,获得积分10
37秒前
曲艺完成签到,获得积分10
38秒前
smottom应助韭黄采纳,获得10
43秒前
jackwang完成签到,获得积分10
46秒前
Asumita完成签到,获得积分10
47秒前
SHuEvan完成签到,获得积分10
47秒前
沐雨汐完成签到,获得积分10
47秒前
尔尔完成签到 ,获得积分10
48秒前
牛黄完成签到 ,获得积分10
48秒前
金枪鱼子发布了新的文献求助10
48秒前
满意的念柏完成签到,获得积分10
49秒前
合适的幻然完成签到,获得积分10
52秒前
淡然思卉完成签到,获得积分10
53秒前
韭黄完成签到,获得积分20
54秒前
小瓜完成签到 ,获得积分10
55秒前
你我的共同完成签到 ,获得积分10
55秒前
郭德久完成签到 ,获得积分0
56秒前
PZL完成签到,获得积分10
57秒前
星辰大海应助123采纳,获得10
57秒前
争当科研巨匠完成签到,获得积分10
58秒前
发发旦旦完成签到,获得积分10
58秒前
拾壹完成签到,获得积分10
1分钟前
ihonest完成签到,获得积分10
1分钟前
今天也要好好学习完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015