Single MR image super-resolution via channel splitting and serial fusion network

计算机科学 人工智能 特征(语言学) 架空(工程) 图像(数学) 模式识别(心理学) 图像融合 人工神经网络 计算机视觉 图像分辨率
作者
Xiaole Zhao,Huali Zhang,Hangfei Liu,Yun Qin,Tao Zhang,Xueming Zou
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:: 108669-108669 被引量:4
标识
DOI:10.1016/j.knosys.2022.108669
摘要

In magnetic resonance imaging (MRI), spatial resolution is an important and critical imaging parameter that represents how much information is contained in a unit space. Acquiring high-resolution MRI data usually takes a long scanning time and is subject to motion artifacts due to hardware, physical, and physiological limitations. Single image super-resolution (SISR) based on deep learning is an effective and promising alternative technique to improve the native spatial resolution of magnetic resonance (MR) images. However, because of the simple diversity and single distribution of training samples, the effective training of deep models with medical training samples and improvement of the tradeoff between model performance and computing overhead are major challenges. In addition, deeper networks are more difficult to effectively train since the information is gradually weakened as the network deepens. In this paper, a novel channel splitting and serial fusion network (CSSFN) is presented for single MR image super-resolution. The proposed CSSFN splits hierarchical features into a series of subfeatures, which are then integrated together in a serial manner. Hence, the network becomes deeper and can discriminatively and reasonably deal with the subfeatures. Moreover, a dense global feature fusion (DGFF) is adopted to integrate the intermediate features, which further promotes the information flow in the network and helps to stabilize model training. Extensive experiments on several typical MR images show the superiority of our CSSFN models to other advanced SISR methods. • The compromise between model performance and computational overhead for MR image SR is improved by introducing a novel Serial Local Feature Fusion (SLFF) strategy. • We ease the dilemma between the trainability and network scale caused by the degradation of MR training samples. • Through pseudo 3D experiments, we confirm the speculation that degraded training samples are more likely to cause the fitting problem of large-scale deep models. • Aggressive channel splitting will exacerbate the problem of model fitting though it initially helps to reduce the risk of over-/under-fitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
残酷的风完成签到,获得积分10
1秒前
不着四六的岁月完成签到,获得积分10
1秒前
sfliufighting完成签到,获得积分20
2秒前
李怀玉完成签到,获得积分10
2秒前
yier完成签到,获得积分10
2秒前
right完成签到 ,获得积分10
3秒前
上官若男应助Luka采纳,获得10
3秒前
LC完成签到 ,获得积分10
3秒前
爱虹遍野完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
Zikc完成签到,获得积分10
4秒前
yaolei完成签到,获得积分10
4秒前
聪慧小霜应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
聪慧小霜应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
聪慧小霜应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
正己化人应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
轻松峻熙完成签到,获得积分10
5秒前
光亮青柏完成签到 ,获得积分10
6秒前
阿龙完成签到,获得积分10
6秒前
善学以致用应助1111采纳,获得10
7秒前
花卷发布了新的文献求助200
8秒前
daheeeee完成签到,获得积分10
9秒前
rorolinlin发布了新的文献求助10
9秒前
小兔叽完成签到,获得积分10
9秒前
py999发布了新的文献求助10
10秒前
hellozijia完成签到,获得积分10
10秒前
tesla完成签到,获得积分20
11秒前
外向的烨霖完成签到,获得积分10
11秒前
orangelion完成签到,获得积分10
11秒前
jzmupyj完成签到,获得积分10
12秒前
12秒前
Xiaoming85完成签到,获得积分10
13秒前
加一完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613581
求助须知:如何正确求助?哪些是违规求助? 4018192
关于积分的说明 12437368
捐赠科研通 3700791
什么是DOI,文献DOI怎么找? 2040931
邀请新用户注册赠送积分活动 1073664
科研通“疑难数据库(出版商)”最低求助积分说明 957328