Single MR image super-resolution via channel splitting and serial fusion network

计算机科学 人工智能 特征(语言学) 架空(工程) 图像(数学) 模式识别(心理学) 图像融合 人工神经网络 计算机视觉 图像分辨率
作者
Xiaole Zhao,Huali Zhang,Hangfei Liu,Yun Qin,Tao Zhang,Xueming Zou
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:: 108669-108669 被引量:4
标识
DOI:10.1016/j.knosys.2022.108669
摘要

In magnetic resonance imaging (MRI), spatial resolution is an important and critical imaging parameter that represents how much information is contained in a unit space. Acquiring high-resolution MRI data usually takes a long scanning time and is subject to motion artifacts due to hardware, physical, and physiological limitations. Single image super-resolution (SISR) based on deep learning is an effective and promising alternative technique to improve the native spatial resolution of magnetic resonance (MR) images. However, because of the simple diversity and single distribution of training samples, the effective training of deep models with medical training samples and improvement of the tradeoff between model performance and computing overhead are major challenges. In addition, deeper networks are more difficult to effectively train since the information is gradually weakened as the network deepens. In this paper, a novel channel splitting and serial fusion network (CSSFN) is presented for single MR image super-resolution. The proposed CSSFN splits hierarchical features into a series of subfeatures, which are then integrated together in a serial manner. Hence, the network becomes deeper and can discriminatively and reasonably deal with the subfeatures. Moreover, a dense global feature fusion (DGFF) is adopted to integrate the intermediate features, which further promotes the information flow in the network and helps to stabilize model training. Extensive experiments on several typical MR images show the superiority of our CSSFN models to other advanced SISR methods. • The compromise between model performance and computational overhead for MR image SR is improved by introducing a novel Serial Local Feature Fusion (SLFF) strategy. • We ease the dilemma between the trainability and network scale caused by the degradation of MR training samples. • Through pseudo 3D experiments, we confirm the speculation that degraded training samples are more likely to cause the fitting problem of large-scale deep models. • Aggressive channel splitting will exacerbate the problem of model fitting though it initially helps to reduce the risk of over-/under-fitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小二郎应助科研通管家采纳,获得20
1秒前
xubobo发布了新的文献求助10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得50
2秒前
qingmoheng应助科研通管家采纳,获得10
2秒前
NGU发布了新的文献求助10
2秒前
wxyshare应助科研通管家采纳,获得10
2秒前
Zyc完成签到,获得积分10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
iNk应助早睡采纳,获得20
2秒前
浮游应助科研通管家采纳,获得10
2秒前
wxyshare应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
华仔应助科研通管家采纳,获得30
2秒前
Jasper应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得20
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
wxyshare应助科研通管家采纳,获得10
3秒前
乌拉拉发布了新的文献求助10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461185
求助须知:如何正确求助?哪些是违规求助? 4566221
关于积分的说明 14304031
捐赠科研通 4491948
什么是DOI,文献DOI怎么找? 2460543
邀请新用户注册赠送积分活动 1449837
关于科研通互助平台的介绍 1425582