Single MR image super-resolution via channel splitting and serial fusion network

计算机科学 人工智能 特征(语言学) 架空(工程) 图像(数学) 模式识别(心理学) 图像融合 人工神经网络 计算机视觉 图像分辨率
作者
Xiaole Zhao,Huali Zhang,Hangfei Liu,Yun Qin,Tao Zhang,Xueming Zou
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:: 108669-108669 被引量:4
标识
DOI:10.1016/j.knosys.2022.108669
摘要

In magnetic resonance imaging (MRI), spatial resolution is an important and critical imaging parameter that represents how much information is contained in a unit space. Acquiring high-resolution MRI data usually takes a long scanning time and is subject to motion artifacts due to hardware, physical, and physiological limitations. Single image super-resolution (SISR) based on deep learning is an effective and promising alternative technique to improve the native spatial resolution of magnetic resonance (MR) images. However, because of the simple diversity and single distribution of training samples, the effective training of deep models with medical training samples and improvement of the tradeoff between model performance and computing overhead are major challenges. In addition, deeper networks are more difficult to effectively train since the information is gradually weakened as the network deepens. In this paper, a novel channel splitting and serial fusion network (CSSFN) is presented for single MR image super-resolution. The proposed CSSFN splits hierarchical features into a series of subfeatures, which are then integrated together in a serial manner. Hence, the network becomes deeper and can discriminatively and reasonably deal with the subfeatures. Moreover, a dense global feature fusion (DGFF) is adopted to integrate the intermediate features, which further promotes the information flow in the network and helps to stabilize model training. Extensive experiments on several typical MR images show the superiority of our CSSFN models to other advanced SISR methods. • The compromise between model performance and computational overhead for MR image SR is improved by introducing a novel Serial Local Feature Fusion (SLFF) strategy. • We ease the dilemma between the trainability and network scale caused by the degradation of MR training samples. • Through pseudo 3D experiments, we confirm the speculation that degraded training samples are more likely to cause the fitting problem of large-scale deep models. • Aggressive channel splitting will exacerbate the problem of model fitting though it initially helps to reduce the risk of over-/under-fitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼猫发布了新的文献求助10
1秒前
西贝应助Xxsy采纳,获得10
1秒前
林夕完成签到 ,获得积分10
2秒前
拼搏的桐完成签到,获得积分10
2秒前
3秒前
cc完成签到 ,获得积分10
4秒前
不会回信息的猪完成签到,获得积分20
5秒前
ChengYonghui完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
bill完成签到,获得积分10
6秒前
孟龙威完成签到,获得积分10
7秒前
心理咨熊师完成签到,获得积分10
7秒前
微风打了烊完成签到 ,获得积分10
7秒前
JFP完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
CodeCraft应助biu采纳,获得10
10秒前
飞快的语蕊完成签到,获得积分10
11秒前
小程同学完成签到,获得积分10
12秒前
竹本完成签到 ,获得积分10
12秒前
Vanness发布了新的文献求助10
12秒前
pancake发布了新的文献求助30
13秒前
14秒前
14秒前
15秒前
浮游应助ZZZ采纳,获得10
15秒前
18秒前
18秒前
赘婿应助王小帅ok采纳,获得10
19秒前
久伴久爱完成签到 ,获得积分10
19秒前
林晨则静完成签到 ,获得积分10
19秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
21秒前
mingmingjiu发布了新的文献求助10
21秒前
张艺馨发布了新的文献求助10
21秒前
赵寒迟完成签到 ,获得积分10
21秒前
cwz发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337