Role of Threshold Voltage Shift in Highly Accelerated Power Cycling Tests for SiC MOSFET Modules

动力循环 材料科学 温度循环 碳化硅 负偏压温度不稳定性 结温 阈值电压 电压 MOSFET 功率MOSFET 电压降 电气工程 可靠性(半导体) 光电子学 功率(物理) 复合材料 工程类 晶体管 物理 气象学 热的 量子力学
作者
Haoze Luo,Francesco Iannuzzo,Marcello Turnaturi
出处
期刊:IEEE Journal of Emerging and Selected Topics in Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:8 (2): 1657-1667 被引量:54
标识
DOI:10.1109/jestpe.2019.2894717
摘要

In silicon carbide (SiC) power MOSFETs, threshold voltage instability under high-temperature conditions has potential reliability threats to long-term operation. In this paper, the threshold voltage shifts caused by the instability mechanisms in accelerated power cycling tests for SiC MOSFETs are investigated. In conventional power cycling tests, the positive threshold voltage shift can cause successive ON-state resistance increases, which can sequentially increase junction temperature variations gradually under fixed test conditions. In order to distinguish the increased die voltage drop from the bond wire resistance degradation, an independent measurement method is used during the power cycling tests. As the number of cycle increases, SiC die degradation can be observed independently of bond wire increases during the tests. It is studied that the SiC die degradation is associated with the threshold voltage instability mechanisms. Unlike the bond wire lift-off failure, the die degradation and the related die resistance increase can stop the power cycling test earlier than expected. In addition, a new test protocol considering the die degradation is proposed for the power cycling test. By means of power device analyzer, the failure mechanism and the degradation performance of SiC MOSFETs before and after the power cycling test are compared and discussed. Finally, experimental results confirm the role of threshold voltage shifting and identify different failure mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张靖完成签到,获得积分10
刚刚
qqq完成签到,获得积分10
1秒前
3秒前
3秒前
4秒前
4秒前
FashionBoy应助tteng采纳,获得10
6秒前
板栗完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
无敌霸王花给MesureWu的求助进行了留言
9秒前
古往今来完成签到,获得积分10
9秒前
9秒前
明明完成签到 ,获得积分10
10秒前
sxhlrm完成签到,获得积分10
11秒前
古往今来发布了新的文献求助10
12秒前
12123浪发布了新的文献求助10
12秒前
CucRuotThua完成签到,获得积分10
13秒前
12123浪发布了新的文献求助10
13秒前
莽哥发布了新的文献求助10
14秒前
孤鲸游完成签到,获得积分20
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
15秒前
草莓完成签到,获得积分10
15秒前
充电宝应助科研通管家采纳,获得30
15秒前
orixero应助科研通管家采纳,获得10
15秒前
ahuyv发布了新的文献求助10
15秒前
15秒前
嗯嗯嗯完成签到,获得积分10
16秒前
17秒前
了多完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284055
求助须知:如何正确求助?哪些是违规求助? 4437688
关于积分的说明 13814537
捐赠科研通 4318612
什么是DOI,文献DOI怎么找? 2370475
邀请新用户注册赠送积分活动 1365895
关于科研通互助平台的介绍 1329363