The Purcell effect is commonly used to increase light emission by enhancing the radiative decay of electric dipole transitions. In this Letter, we demonstrate that the opposite effect, namely, the inhibition of electric dipole transitions, can be used to strongly enhance light emission via magnetic dipole transitions. Specifically, by exploiting the differing symmetries of competitive electric and magnetic dipole transitions in trivalent europium, we demonstrate a fourfold enhancement of the far-field emission from the (5)D(0)→(7)F(1) magnetic dipole transition in trivalent europium. We show that this strong enhancement is well predicted by a three-level model that couples the individual Purcell enhancement factors of competitive transitions from the same excited state.