清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

High glucose‐induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects

西妥因1 SIRT3 组蛋白脱乙酰基酶 化学 氧化应激 HDAC4型 组蛋白脱乙酰基酶2 组蛋白H3
作者
Jingwen Yu,Yanqing Wu,Peixin Yang
出处
期刊:Journal of Neurochemistry [Wiley]
卷期号:137 (3): 371-383 被引量:71
标识
DOI:10.1111/jnc.13587
摘要

Abstract Aberrant epigenetic modifications are implicated in maternal diabetes‐induced neural tube defects (NTDs). Because cellular stress plays a causal role in diabetic embryopathy, we investigated the possible role of the stress‐resistant sirtuin (SIRT) family histone deacetylases. Among the seven sirtuins (SIRT1‐7), pre‐gestational maternal diabetes in vivo or high glucose in vitro significantly reduced the expression of SIRT 2 and SIRT6 in the embryo or neural stem cells, respectively. The down‐regulation of SIRT2 and SIRT6 was reversed by superoxide dismutase 1 (SOD1) over‐expression in the in vivo mouse model of diabetic embryopathy and the SOD mimetic, tempol and cell permeable SOD, PEGSOD in neural stem cell cultures. 2,3‐dimethoxy‐1,4‐naphthoquinone (DMNQ), a superoxide generating agent, mimicked high glucose‐suppressed SIRT2 and SIRT6 expression. The acetylation of histone 3 at lysine residues 56 (H3K56), H3K14, H3K9, and H3K27, putative substrates of SIRT2 and SIRT6, was increased by maternal diabetes in vivo or high glucose in vitro , and these increases were blocked by SOD1 over‐expression or tempol treatment. SIRT2 or SIRT6 over‐expression abrogated high glucose‐suppressed SIRT2 or SIRT6 expression, and prevented the increase in acetylation of their histone substrates. The potent sirtuin activator (SRT1720) blocked high glucose‐increased histone acetylation and NTD formation, whereas the combination of a pharmacological SIRT2 inhibitor and a pan SIRT inhibitor mimicked the effect of high glucose on increased histone acetylation and NTD induction. Thus, diabetes in vivo or high glucose in vitro suppresses SIRT2 and SIRT6 expression through oxidative stress, and sirtuin down‐regulation‐induced histone acetylation may be involved in diabetes‐induced NTDs. image The mechanism underlying pre‐gestational diabetes‐induced neural tube defects (NTDs) is still elusive. Our study unravels a new epigenetic mechanism in which maternal diabetes‐induced oxidative stress represses sirtuin deacetylase 2 (SIRT2) and 6 (SIRT6) expression leading to histone acetylation and gene expression. SIRT down‐regulation mediates the teratogenicity of diabetes leading to (NTD) formation. The study provides a mechanistic basis for the development of natural antioxidants and SIRT activators as therapeutics for diabetic embryopathy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊逸的白梦完成签到 ,获得积分0
1秒前
单小芫完成签到 ,获得积分10
11秒前
tcy完成签到,获得积分10
20秒前
26秒前
123发布了新的文献求助10
30秒前
哈哈学习学习噢完成签到,获得积分10
31秒前
TTDY完成签到 ,获得积分0
34秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
cdercder应助科研通管家采纳,获得20
35秒前
Hello应助科研通管家采纳,获得10
35秒前
cdercder应助科研通管家采纳,获得20
35秒前
平常的三问完成签到 ,获得积分10
36秒前
39秒前
阔达的秀发完成签到,获得积分10
39秒前
小小完成签到 ,获得积分10
40秒前
czzlancer发布了新的文献求助10
43秒前
个性松完成签到 ,获得积分10
45秒前
45秒前
wBw完成签到,获得积分10
47秒前
蓝意完成签到,获得积分0
1分钟前
1分钟前
tkbxa完成签到 ,获得积分10
1分钟前
czzlancer完成签到,获得积分10
1分钟前
我我我我发布了新的文献求助10
1分钟前
四斤瓜完成签到 ,获得积分10
1分钟前
HCCha完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
席江海完成签到,获得积分10
1分钟前
隐形荟发布了新的文献求助10
1分钟前
jlwang发布了新的文献求助10
1分钟前
胖胖橘完成签到 ,获得积分10
1分钟前
RLLLLLLL完成签到 ,获得积分10
1分钟前
小马甲应助笑面客采纳,获得10
1分钟前
小鱼女侠完成签到 ,获得积分10
2分钟前
勤劳的颤完成签到 ,获得积分10
2分钟前
pebble完成签到,获得积分10
2分钟前
yellowonion完成签到 ,获得积分10
2分钟前
北邸完成签到 ,获得积分10
2分钟前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725449
求助须知:如何正确求助?哪些是违规求助? 3270385
关于积分的说明 9965616
捐赠科研通 2985380
什么是DOI,文献DOI怎么找? 1638003
邀请新用户注册赠送积分活动 777792
科研通“疑难数据库(出版商)”最低求助积分说明 747231