An investigative study on differentiation of citrus fruit/fruit juices by UPLC-QToF MS and chemometrics

化学计量学 橙色(颜色) 化学 偏最小二乘回归 主成分分析 食品科学 橙汁 线性判别分析 色谱法 数学 统计
作者
Zora Jandrić,Andrew Cannavan
出处
期刊:Food Control [Elsevier]
卷期号:72: 173-180 被引量:45
标识
DOI:10.1016/j.foodcont.2015.12.031
摘要

In the study presented, the potential of coupling chemometrics and mass spectrometry (UPLC-QToF MS) data for distinguishing the origin and variety of citrus fruit/fruit juices was investigated. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and soft independent modelling by class analogy (SIMCA) were employed. Clustering of citrus fruits (orange, grapefruit, mandarin, and pomelo) and oranges of various geographical/botanical origin was revealed using PCA on data produced in both negative (goodness of fit, R2(cum) = 0.67–0.92, and predictability, Q2(cum) = 0.56–0.88) and positive (R2(cum) = 0.58–0.85 and Q2(cum) = 0.47–0.80) ionisation mode. PLS-DA and SIMCA confirmed the results (with 100% recognition ability obtained for citrus fruits/orange models and fresh squeezed commercial orange juice, while classification success of 80% was achieved for commercial orange juice prepared from concentrate) and showed that the category models for the class can be sensitive and highly specific. Characteristic compounds responsible for the discrimination were identified. The applicability of the models was tested with an external data set of fruit juices adulterated with other fruit juices down to 1% and diluted with water down to 5%. Using Coomans' plots, adulterated samples were easily distinguished from authentic samples showing the possibility of applying this method as a rapid screening technique to trace or confirm the origin of citrus fruit/fruit juices and detect fraud.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjw发布了新的文献求助10
刚刚
学术小菜鸟完成签到 ,获得积分10
刚刚
汉堡包应助懒羊羊采纳,获得10
刚刚
刚刚
刚刚
科目三应助向阳而生采纳,获得30
1秒前
passby完成签到,获得积分10
2秒前
GatlingChong完成签到,获得积分10
2秒前
星光不负赶路人完成签到,获得积分10
2秒前
2秒前
斯文败类应助Yara.H采纳,获得10
2秒前
3秒前
3秒前
PXY完成签到,获得积分10
4秒前
斯文败类应助拼搏一曲采纳,获得10
4秒前
4秒前
fairy112233完成签到,获得积分10
4秒前
huhdcid发布了新的文献求助30
5秒前
韦一手完成签到,获得积分10
5秒前
5秒前
Dr_Man应助呜呜呜采纳,获得10
5秒前
风车完成签到,获得积分10
5秒前
wanci应助zlk采纳,获得10
6秒前
7秒前
隐形曼青应助wjw采纳,获得10
7秒前
乐观的海发布了新的文献求助10
7秒前
7秒前
打工人完成签到,获得积分10
7秒前
7秒前
7秒前
搜集达人应助勤恳绝义采纳,获得10
8秒前
慕青应助吉祥如意采纳,获得10
8秒前
今天做实验了吗完成签到,获得积分10
9秒前
9秒前
俊逸的鲜花完成签到,获得积分10
9秒前
10秒前
王三石完成签到,获得积分10
10秒前
李健的小迷弟应助陈泽宇采纳,获得10
10秒前
91ge完成签到 ,获得积分10
10秒前
ding应助阴香萍采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5283636
求助须知:如何正确求助?哪些是违规求助? 4437415
关于积分的说明 13813418
捐赠科研通 4318122
什么是DOI,文献DOI怎么找? 2370293
邀请新用户注册赠送积分活动 1365614
关于科研通互助平台的介绍 1329113