An investigative study on differentiation of citrus fruit/fruit juices by UPLC-QToF MS and chemometrics

化学计量学 橙色(颜色) 化学 偏最小二乘回归 主成分分析 食品科学 橙汁 线性判别分析 色谱法 数学 统计
作者
Zora Jandrić,Andrew Cannavan
出处
期刊:Food Control [Elsevier BV]
卷期号:72: 173-180 被引量:45
标识
DOI:10.1016/j.foodcont.2015.12.031
摘要

In the study presented, the potential of coupling chemometrics and mass spectrometry (UPLC-QToF MS) data for distinguishing the origin and variety of citrus fruit/fruit juices was investigated. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and soft independent modelling by class analogy (SIMCA) were employed. Clustering of citrus fruits (orange, grapefruit, mandarin, and pomelo) and oranges of various geographical/botanical origin was revealed using PCA on data produced in both negative (goodness of fit, R2(cum) = 0.67–0.92, and predictability, Q2(cum) = 0.56–0.88) and positive (R2(cum) = 0.58–0.85 and Q2(cum) = 0.47–0.80) ionisation mode. PLS-DA and SIMCA confirmed the results (with 100% recognition ability obtained for citrus fruits/orange models and fresh squeezed commercial orange juice, while classification success of 80% was achieved for commercial orange juice prepared from concentrate) and showed that the category models for the class can be sensitive and highly specific. Characteristic compounds responsible for the discrimination were identified. The applicability of the models was tested with an external data set of fruit juices adulterated with other fruit juices down to 1% and diluted with water down to 5%. Using Coomans' plots, adulterated samples were easily distinguished from authentic samples showing the possibility of applying this method as a rapid screening technique to trace or confirm the origin of citrus fruit/fruit juices and detect fraud.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得30
刚刚
wangruize完成签到,获得积分10
刚刚
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
认真念梦发布了新的文献求助10
1秒前
suein发布了新的文献求助10
2秒前
xiaowang完成签到,获得积分10
2秒前
FashionBoy应助Shan采纳,获得10
2秒前
FashionBoy应助土豆不吃鱼采纳,获得10
3秒前
乐乐应助伶俐绮采纳,获得10
5秒前
过眼云烟发布了新的文献求助30
5秒前
5秒前
6秒前
xiaowang发布了新的文献求助30
6秒前
特兰克斯完成签到,获得积分20
6秒前
dong应助探寻采纳,获得10
7秒前
8秒前
9秒前
韩涵发布了新的文献求助10
9秒前
陈一冲发布了新的文献求助10
9秒前
9秒前
完美世界应助11采纳,获得10
11秒前
SYLH应助邱丘邱采纳,获得15
12秒前
俭朴山柏发布了新的文献求助10
13秒前
竹萱发布了新的文献求助10
13秒前
13秒前
Owen应助ln采纳,获得10
13秒前
14秒前
Orange应助我门牙有缝采纳,获得10
16秒前
俟天晴发布了新的文献求助10
16秒前
16秒前
Shan发布了新的文献求助10
17秒前
肥胖的红薯完成签到 ,获得积分10
17秒前
TT完成签到,获得积分10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975986
求助须知:如何正确求助?哪些是违规求助? 3520289
关于积分的说明 11202025
捐赠科研通 3256778
什么是DOI,文献DOI怎么找? 1798453
邀请新用户注册赠送积分活动 877605
科研通“疑难数据库(出版商)”最低求助积分说明 806482