尸体痉挛
软骨
医学
脚踝
解剖
骨关节炎
关节软骨
膝关节
尸体
生物力学
生物医学工程
外科
病理
替代医学
作者
Duncan E.T. Shepherd,B B Seedhom
摘要
OBJECTIVES
(a) To determine the topographical variations in cartilage thickness over the entire surfaces of cadaveric lower limb joints, and (b) to examine the correlations between: cartilage thickness and its site specific modulus; cartilage thickness and donor age, weight, height, and body mass index. METHODS
The cartilage thickness of 11 sets of cadaveric human joints each comprising an ankle, knee, and hip was measured using a needle probe technique. Statistical analysis was used to compare the cartilage thickness of the different lower limb joints and the differences in cartilage thickness over the surface of individual joints. It was further examined whether cartilage had a correlation with its stiffness, and any of the details of the specimen donors such as age, weight, height, and body mass index. RESULTS
The mean cartilage thickness of the knee was significantly greater than that of the ankle and hip (p<0.001) in all 11 sets of joints, while the cartilage thickness of the hip was significantly greater than that of the ankle in 10 sets of joints (p<0.001). The mass of specimen donors was found to correlate with the mean cartilage thickness of all three lower limb joints. A correlation was also found between the height of donors and the mean cartilage thickness of the knee and hip joints, while only in the ankle joint was a correlation found between the mean cartilage thickness and the body mass index of the specimen donors. A further correlation was found between cartilage thickness and its modulus; the thinner the cartilage, the higher the modulus. CONCLUSIONS
The thickness of articular cartilage seems to be related to the congruance of a joint; thin cartilage is found in congruent joints such as the ankle, whereas thick cartilage is found in incongruent joints such as the knee. The correlations in this study imply that the larger and heavier was a donor the thicker was the cartilage in the lower limb joints. The data further suggest the presence of an inverse relation between the mean cartilage thickness and mean compressive modulus in each of the joints examined.
科研通智能强力驱动
Strongly Powered by AbleSci AI