兰姆达
独特性
数学
数学物理
非线性系统
空格(标点符号)
散射
二次方程
不变(物理)
薛定谔方程
规范理论
散射理论
非线性薛定谔方程
数学分析
物理
量子力学
几何学
语言学
哲学
作者
Akihiro Shimomura,Satoshi Tonegawa
出处
期刊:Differential and Integral Equations
日期:2004-01-01
卷期号:17 (1-2)
被引量:23
标识
DOI:10.57262/die/1356060476
摘要
We study scattering theory for nonlinear Schrödinger equations with cubic and quadratic nonlinearities in one and two space dimensions, respectively. For example, the nonlinearities are the sum of the gauge-invariant term and non-gauge-invariant terms such as $\lambda_0 \!|u|^2u +\lambda_1 u^3 +\lambda_2 u\bar{u}^2 +\lambda_3 \bar{u}^3$ in the one-dimensional case, where $\lambda_0 \in {\mathbb R}$ and $\lambda_1,\lambda_2,\lambda_3$ $ \in {\mathbb C}$. The scattering theory for these equations belongs to the long-range case. We show the existence and uniqueness of global solutions for those equations which approach a given modified free profile. The same problem for the nonlinear Schrödinger equation with the Stark potentials is also considered.
科研通智能强力驱动
Strongly Powered by AbleSci AI