Restoration of thermally reduced graphene oxide by atomic-level selenium doping

石墨烯 材料科学 氧化物 兴奋剂 纳米技术 杂原子 化学物理 石墨烯纳米带 化学工程 光电子学 冶金 化学 戒指(化学) 有机化学 工程类
作者
Young Soo Yun,Gabin Yoon,Min‐Sik Park,Se Youn Cho,Hee‐Dae Lim,Haegyeom Kim,Yung Woo Park,Byung Hoon Kim,Kisuk Kang,Hyoung‐Joon Jin
出处
期刊:Npg Asia Materials [Springer Nature]
卷期号:8 (12): e338-e338 被引量:48
标识
DOI:10.1038/am.2016.191
摘要

The use of reduced graphene oxide (rGO) suffers from irreparable damage because of topological defects and residual heteroatoms, which degrade the inherent properties of graphene. To restore its electrical transport properties, charge-transfer chemical doping with d-electron-rich heteroatoms has been proposed. Herein, we report the effects of atomic-level selenium doping in rGO. Using first-principles calculations, we found that selenium atoms could be selectively bonded in particular locations, such as the pseudo-edge sites of hole-cluster defects in the basal plane and edge defect sites of graphene; however, we found that the intrinsic topological defects of the basal plane were unfavorable for bonding. Numerous selenium atoms were introduced on the fully amorphorized rGO surface, inducing a dramatic change of its electrical transport properties by electron doping. The large metallic regions formed by the selenium atoms on rGOs led to the enhancement of electrical conductivity by 210 S cm–1 at 300 K. Moreover, the temperature-dependent conductivities (σ)/σ20K of selenium-doped rGOs (Se-rGOs) were almost constant in the temperature range of 20–300 K, indicating that the carrier mobility of Se-rGOs becomes temperature-independent after selenium doping, similar to that of pure graphene. Atomic-thin layers of selenium can turn microscale graphene oxide sheets into enhanced energy-storage devices, reports a new study. Graphene's extraordinary conductivity has attracted interest for applications such as battery anodes, but manufacturers seeking sizeable quantities often use reduced graphene oxide – chemically synthesized carbon films containing oxygen and other defects that hinder charge transport. Hyoung-Joon Jin from Inha University in South Korea and colleagues now demonstrate that heating graphene oxide with elemental selenium returns metal-like conductivity to the carbon sheet through a process called surface transfer doping. Scanning electron microscopy and first-principles calculations revealed that selenium atoms attach to surface edge defect sites and transfer electrons to graphene oxide. These dopants enabled graphene oxide to achieve a similar battery capacity and longevity as pure graphene when incorporated in a prototype lithium-ion device. Selenium atoms were selectively introduced in particular locations such as the pseudo-edge sites of hole-cluster defects in the basal plane and edge defect sites of the fully amorphorized surface of reduced graphene oxide (rGO), inducing a dramatic change of electrical transport properties of rGO by electron doping.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6.1应助pyp采纳,获得10
刚刚
yier完成签到,获得积分10
1秒前
1秒前
GiGi完成签到,获得积分10
1秒前
酷波er应助活泼听露采纳,获得10
2秒前
橙子完成签到,获得积分10
2秒前
杨文献完成签到,获得积分10
3秒前
3秒前
小言发布了新的文献求助10
4秒前
便当发布了新的文献求助10
5秒前
虞头星星完成签到 ,获得积分10
5秒前
余航发布了新的文献求助30
5秒前
啦啦啦123发布了新的文献求助30
5秒前
6秒前
6秒前
wanci应助杨文献采纳,获得10
8秒前
英姑应助Lignin采纳,获得10
9秒前
仁爱行云发布了新的文献求助10
10秒前
10秒前
柴啊发布了新的文献求助10
12秒前
13秒前
Maestro_S应助ll采纳,获得30
13秒前
finger完成签到,获得积分10
15秒前
16秒前
头哥发布了新的文献求助10
17秒前
Tomice发布了新的文献求助10
17秒前
zxy完成签到,获得积分20
17秒前
17秒前
蓝天发布了新的文献求助10
17秒前
19秒前
HOAN应助绝望的老实人采纳,获得50
20秒前
清爽的柚子完成签到 ,获得积分10
20秒前
活泼听露发布了新的文献求助10
20秒前
李健应助小张采纳,获得10
21秒前
成就迎梅完成签到,获得积分10
21秒前
冉冉发布了新的文献求助10
22秒前
张zhang发布了新的文献求助10
23秒前
无名应助小言采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736834
求助须知:如何正确求助?哪些是违规求助? 5368742
关于积分的说明 15334181
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622909
邀请新用户注册赠送积分活动 1571817
关于科研通互助平台的介绍 1528640