Today, we have access to excellent and advanced molecular methods that are already widely used. This requires rules to control the quality of the methods as well as the laboratory. Both aspects will be discussed in the article. Following the isolation of nucleic acids they are used for genotyping which allows to address several questions: diagnosis of inherited diseases, inherited predispositions, forensic analyses, identification and typing of bacteria or viruses, elucidation of evolutionary aspects. Importantly, it has to be realized that the type and heterogeneity of phenotypically relevant mutations determines the method used for testing. Today, most laboratories use either PCR analyses or Sanger sequencing for diagnostic applications. However, increasingly next generation sequencing (NGS) is applied. The clinical use of NGS is still very challenging, but we can expect that the switch to regular application of this method will be coming in the very near future. The price for NGS has gone down to approx. USD 1000,- which makes the routine diagnostic use feasible. Nevertheless, several challenges have yet to be solved, such as the processing of the large data volume as well as storage of the data. Supporting data bases exist already and some will be discussed in the article. The understanding of the clinical relevance of many polymorphisms is another issue that has yet to be solved, particularly as in the context of personalized medicine polymorphisms have become increasingly important.