LODES: Local Density Meets Spectral Outlier Detection

离群值 异常检测 计算机科学 局部异常因子 数据挖掘 编码(集合论) 入侵检测系统 模式识别(心理学) 人工智能 算法 集合(抽象数据类型) 程序设计语言
作者
Saket Sathe,Charų C. Aggarwal
标识
DOI:10.1137/1.9781611974348.20
摘要

Previous chapter Next chapter Full AccessProceedings Proceedings of the 2016 SIAM International Conference on Data Mining (SDM)LODES: Local Density Meets Spectral Outlier DetectionSaket Sathe and Charu AggarwalSaket Sathe and Charu Aggarwalpp.171 - 179Chapter DOI:https://doi.org/10.1137/1.9781611974348.20PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract The problem of outlier detection has been widely studied in existing literature because of its numerous applications in fraud detection, medical diagnostics, fault detection, and intrusion detection. A large category of outlier analysis algorithms have been proposed, such as proximity-based methods and local density-based methods. These methods are effective in finding outliers distributed along linear manifolds. Spectral methods, however, are particularly well suited to finding outliers when the data is distributed along manifolds of arbitrary shape. In practice, the underlying manifolds may have varying density, as a result of which a direct use of spectral methods may not be effective. In this paper, we show how to combine spectral techniques with local density-based methods in order to discover interesting outliers. We present experimental results demonstrating the effectiveness of our approach with respect to well-known competing methods. Previous chapter Next chapter RelatedDetails Published:2016eISBN:978-1-61197-434-8 https://doi.org/10.1137/1.9781611974348Book Series Name:ProceedingsBook Code:PRDT16Book Pages:1-867
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LZM完成签到,获得积分10
1秒前
子时月完成签到,获得积分10
1秒前
Yara.H完成签到 ,获得积分10
1秒前
高求发布了新的文献求助10
1秒前
充电宝应助周小鱼采纳,获得10
1秒前
反之完成签到,获得积分10
2秒前
跳跃的雁完成签到,获得积分10
2秒前
2秒前
汉堡包应助温暖焱采纳,获得10
3秒前
Priscilla完成签到,获得积分10
3秒前
3秒前
顾君如完成签到,获得积分10
4秒前
4秒前
静静完成签到,获得积分10
4秒前
atom发布了新的文献求助10
4秒前
故意的怜晴完成签到 ,获得积分10
5秒前
小叶子完成签到,获得积分10
6秒前
机智紫寒发布了新的文献求助10
6秒前
好难好难完成签到 ,获得积分20
6秒前
choo发布了新的文献求助30
7秒前
织安完成签到,获得积分10
8秒前
9秒前
科研通AI2S应助Key采纳,获得10
9秒前
小强x完成签到,获得积分10
9秒前
慕青应助struggling采纳,获得30
10秒前
Fnoopy完成签到,获得积分10
10秒前
lhnee应助冯小超的神经采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
Dank1ng完成签到,获得积分10
10秒前
12秒前
12秒前
坦率的匪发布了新的文献求助20
12秒前
cg完成签到,获得积分10
13秒前
yuan关注了科研通微信公众号
14秒前
14秒前
111完成签到 ,获得积分10
14秒前
15秒前
来来完成签到,获得积分10
15秒前
钱超完成签到,获得积分10
16秒前
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186