High Coulombic efficiency aluminum-ion battery using an AlCl 3 -urea ionic liquid analog electrolyte

法拉第效率 电池(电) 电解质 离子液体 阴极 阳极 材料科学 插层(化学) 石墨 拉曼光谱 石墨层间化合物 电化学 无机化学 化学 分析化学(期刊) 电极 有机化学 催化作用 物理 光学 物理化学 功率(物理) 量子力学
作者
Michael Angell,Chun‐Jern Pan,Youmin Rong,Chunze Yuan,Meng‐Chang Lin,Bing‐Joe Hwang,Hongjie Dai
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:114 (5): 834-839 被引量:342
标识
DOI:10.1073/pnas.1619795114
摘要

In recent years, impressive advances in harvesting renewable energy have led to a pressing demand for the complimentary energy storage technology. Here, a high Coulombic efficiency (∼99.7%) Al battery is developed using earth-abundant aluminum as the anode, graphite as the cathode, and a cheap ionic liquid analog electrolyte made from a mixture of AlCl3 and urea in a 1.3:1 molar ratio. The battery displays discharge voltage plateaus around 1.9 and 1.5 V (average discharge = 1.73 V) and yielded a specific cathode capacity of ∼73 mAh g-1 at a current density of 100 mA g-1 (∼1.4 C). High Coulombic efficiency over a range of charge-discharge rates and stability over ∼150-200 cycles was easily demonstrated. In situ Raman spectroscopy clearly showed chloroaluminate anion intercalation/deintercalation of graphite (positive electrode) during charge-discharge and suggested the formation of a stage 2 graphite intercalation compound when fully charged. Raman spectroscopy and NMR suggested the existence of AlCl4-, Al2Cl7- anions and [AlCl2·(urea)n]+ cations in the AlCl3/urea electrolyte when an excess of AlCl3 was present. Aluminum deposition therefore proceeded through two pathways, one involving Al2Cl7- anions and the other involving [AlCl2·(urea)n]+ cations. This battery is a promising prospect for a future high-performance, low-cost energy storage device.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陌上花开完成签到,获得积分0
1秒前
1秒前
嘟嘟发布了新的文献求助10
1秒前
1秒前
2秒前
研一小刘完成签到,获得积分10
2秒前
善良的路灯完成签到,获得积分10
3秒前
uu发布了新的文献求助10
3秒前
4秒前
易烊千玺发布了新的文献求助10
5秒前
请叫我风吹麦浪应助HJJHJH采纳,获得20
5秒前
ZBN发布了新的文献求助10
5秒前
5秒前
善学以致用应助123采纳,获得10
7秒前
7秒前
8秒前
AFEUWOS01发布了新的文献求助30
8秒前
星辰大海应助Left采纳,获得10
8秒前
sansan发布了新的文献求助10
9秒前
哈哈哈完成签到,获得积分10
9秒前
科研通AI5应助DTT采纳,获得10
10秒前
10秒前
11秒前
坚强不言完成签到,获得积分10
11秒前
11秒前
小天应助善良的路灯采纳,获得30
12秒前
12秒前
脑洞疼应助yigu采纳,获得10
13秒前
13秒前
Hu完成签到 ,获得积分10
15秒前
liuyan432完成签到,获得积分10
15秒前
cc完成签到,获得积分10
15秒前
易烊千玺完成签到,获得积分20
15秒前
哒哒哒哒完成签到,获得积分10
15秒前
16秒前
李健应助陶醉觅夏采纳,获得10
17秒前
17秒前
独特凡松完成签到,获得积分10
17秒前
木笔朱瑾完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794