相互依存的网络
巨型组件
渗透(认知心理学)
组分(热力学)
渗流理论
分数(化学)
级联故障
灾难性故障
功能(生物学)
计算机科学
节点(物理)
连接部件
上下界
渗流阈值
拓扑(电路)
随机图
脆弱性(计算)
相互依存
统计物理学
分布式计算
复杂网络
风险分析(工程)
弹性(材料科学)
数学
理论计算机科学
组合数学
物理
工程类
人工智能
图形
结构工程
进化生物学
热力学
电阻率和电导率
神经科学
有机化学
法学
政治学
量子力学
电力系统
功率(物理)
生物
万维网
化学
数学分析
作者
Xin Yuan,Yanqing Hu,H. Eugene Stanley,Shlomo Havlin
标识
DOI:10.1073/pnas.1621369114
摘要
Significance Percolation theory assumes that only the largest connected component is functional. However, in reality, some components that are not connected to the largest component can also function. Here, we generalize the percolation theory by assuming a fraction of reinforced nodes that can function and support their components, although they are disconnected from the largest connected component. We find that the reinforced nodes reduce significantly the cascading failures in interdependent networks system. Moreover, including a small critical fraction of reinforced nodes can avoid abrupt catastrophic failures in such systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI