Data-driven depth calibration for distributed acoustic sensing

夹紧 校准 插值(计算机图形学) 声学 分布式声传感 计算机科学 集合(抽象数据类型) 联轴节(管道) 数据集 光纤 地质学 工程类 光纤传感器 人工智能 数学 电信 物理 计算机视觉 统计 运动(物理) 机械工程 程序设计语言
作者
Karen Nørgaard Madsen,Richard Tøndel,Øyvind Kvam
出处
期刊:The leading edge [Society of Exploration Geophysicists]
卷期号:35 (7): 610-614 被引量:10
标识
DOI:10.1190/tle35070610.1
摘要

Distributed acoustic sensing (DAS) can make use of an ordinary telecom fiber as a continuous array of acoustic sensors to acquire, for example, downhole seismic. One challenge when using DAS is assigning correct depth to a given part of the DAS data record. Usually, depth is assigned by linear interpolation between reference points in the record for which the depth is known. We present a case where this approach did not work satisfactorily due to a fiber accumulation of unknown length between the reference points in the top and bottom of the well. The data we discuss were acquired using Silixa's iDAS technology retrofitted to previously installed fiber-optic cables. During installation, the cables were clamped to the tubing at each coupling between tubing sections. We found a pattern in the iDAS data that could be related to the clamping points. The pattern is particularly clear for frequencies in the 100–200 Hz band and may be caused by eigenmode vibrations set up by the clamping points. Based on this observation, a method for data-driven depth calibration was developed by matching the observed pattern to the clamp positions known from the tubing-tally information. An algorithm was designed to do the optimization. With regularly spaced clamps, several solutions are output, and some knowledge of the approximate depth is needed to pick the appropriate one. Our data-driven depth calibration was successfully applied to iDAS data from six wells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万海发布了新的文献求助10
刚刚
ZC发布了新的文献求助10
刚刚
咖啡蓝图发布了新的文献求助30
刚刚
量子星尘发布了新的文献求助10
2秒前
璿_完成签到,获得积分10
2秒前
劲秉应助MosesXie采纳,获得20
4秒前
6秒前
科研通AI2S应助..采纳,获得10
6秒前
9秒前
11秒前
12秒前
万海完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
英俊的铭应助奥特曼采纳,获得10
13秒前
刘夫人发布了新的文献求助10
14秒前
15秒前
jiajia发布了新的文献求助10
15秒前
南栀发布了新的文献求助10
16秒前
咖啡蓝图完成签到,获得积分10
16秒前
YOLK97发布了新的文献求助10
16秒前
Akim应助YY采纳,获得10
17秒前
17秒前
17秒前
Deduta发布了新的文献求助10
19秒前
19秒前
20秒前
科研通AI5应助辉hui采纳,获得10
21秒前
wangbw完成签到,获得积分10
21秒前
21秒前
21秒前
安全123完成签到,获得积分20
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
22秒前
刘蕾完成签到,获得积分10
23秒前
陈民发布了新的文献求助10
24秒前
ZCQ完成签到,获得积分10
24秒前
英俊的铭应助小薛采纳,获得10
24秒前
AAA完成签到,获得积分10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666163
求助须知:如何正确求助?哪些是违规求助? 3225175
关于积分的说明 9761817
捐赠科研通 2935171
什么是DOI,文献DOI怎么找? 1607459
邀请新用户注册赠送积分活动 759187
科研通“疑难数据库(出版商)”最低求助积分说明 735153