Tuning the Interfacial Electrical Field of Bipolar Membranes with Temperature and Electrolyte Concentration for Enhanced Water Dissociation

多物理 电解质 离解(化学) 电场 限制电流 电介质 材料科学 电导率 电化学 化学工程 离子 电流密度 热力学 化学物理 化学 有限元法 光电子学 电极 物理化学 物理 工程类 量子力学 有机化学 生物化学
作者
Huanlei Zhang,Dongbo Cheng,Chengxiang Xiang,Meng Lin
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:11 (21): 8044-8054 被引量:2
标识
DOI:10.1021/acssuschemeng.3c00142
摘要

A coupled experimental and numerical study was performed for a fundamental understanding of the impact of operating conditions, i.e., temperature and electrolyte concentration, as well as interfacial abruptness, on the bipolar membrane (BPM) performance. A comprehensive multiphysics-based model was developed to optimize the operation condition and interfacial properties of BPM, and the model was used to guide the design and engineering of high-performing BPMs. The origin of the enhanced BPM performance at a high temperature was identified, which was attributed to the intrinsic reaction rate enhancement as well as the increase in electrolyte ionic conductivity. The experimentally demonstrated current density–voltage characteristics of BPMs clearly exhibited three distinctive regions of operation: ion-crossover region, water dissociation region, and water-limiting region, which agreed well with the multiphysics simulation results. In addition, the model revealed that a sharper interfacial abruptness led to improved BPM performance due to the enhanced interfacial electric field at the water dissociation region. The decrease of the electrolyte concentration, which increased the dielectric constant of the electrolyte, enhanced the interfacial electric field, leading to improved electrochemical performances. The present study offers an in-depth perspective to understand the species transport as well as water dissociation mechanism under various operation conditions and membrane designs, providing the optimal operation conditions and membrane designs for maximizing the BPM performance at high current densities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼万言发布了新的文献求助10
2秒前
ding应助QYPANG采纳,获得10
3秒前
yx_cheng应助松林采纳,获得20
4秒前
6秒前
7秒前
打打应助星沉静默采纳,获得10
8秒前
10秒前
李爱国应助淡定海亦采纳,获得10
11秒前
12秒前
13秒前
16秒前
Zjx发布了新的文献求助10
16秒前
成功完成签到,获得积分10
17秒前
20秒前
21秒前
24秒前
wangcc完成签到,获得积分10
25秒前
淡定海亦发布了新的文献求助10
27秒前
27秒前
28秒前
余姓懒发布了新的文献求助10
29秒前
30秒前
青黛发布了新的文献求助10
34秒前
佟彦成发布了新的文献求助10
35秒前
35秒前
今后应助王宇杰采纳,获得10
38秒前
Bighen完成签到 ,获得积分0
44秒前
任性的白玉完成签到 ,获得积分10
48秒前
zz完成签到 ,获得积分10
48秒前
xbchen完成签到,获得积分10
49秒前
温柔以蓝完成签到,获得积分10
52秒前
xbchen发布了新的文献求助10
52秒前
晚风完成签到,获得积分10
53秒前
王宏宇发布了新的文献求助10
54秒前
英俊的铭应助科研通管家采纳,获得10
55秒前
地表飞猪应助科研通管家采纳,获得10
55秒前
luyue9406应助科研通管家采纳,获得10
55秒前
汉堡包应助科研通管家采纳,获得10
55秒前
我是老大应助科研通管家采纳,获得10
55秒前
英姑应助科研通管家采纳,获得10
55秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993104
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264385
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652