Tuning the Interfacial Electrical Field of Bipolar Membranes with Temperature and Electrolyte Concentration for Enhanced Water Dissociation

多物理 电解质 离解(化学) 电场 限制电流 电介质 材料科学 电导率 电化学 化学工程 离子 电流密度 热力学 化学物理 化学 有限元法 光电子学 电极 物理化学 生物化学 物理 有机化学 量子力学 工程类
作者
Huanlei Zhang,Dongbo Cheng,Chengxiang Xiang,Meng Lin
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:11 (21): 8044-8054 被引量:2
标识
DOI:10.1021/acssuschemeng.3c00142
摘要

A coupled experimental and numerical study was performed for a fundamental understanding of the impact of operating conditions, i.e., temperature and electrolyte concentration, as well as interfacial abruptness, on the bipolar membrane (BPM) performance. A comprehensive multiphysics-based model was developed to optimize the operation condition and interfacial properties of BPM, and the model was used to guide the design and engineering of high-performing BPMs. The origin of the enhanced BPM performance at a high temperature was identified, which was attributed to the intrinsic reaction rate enhancement as well as the increase in electrolyte ionic conductivity. The experimentally demonstrated current density–voltage characteristics of BPMs clearly exhibited three distinctive regions of operation: ion-crossover region, water dissociation region, and water-limiting region, which agreed well with the multiphysics simulation results. In addition, the model revealed that a sharper interfacial abruptness led to improved BPM performance due to the enhanced interfacial electric field at the water dissociation region. The decrease of the electrolyte concentration, which increased the dielectric constant of the electrolyte, enhanced the interfacial electric field, leading to improved electrochemical performances. The present study offers an in-depth perspective to understand the species transport as well as water dissociation mechanism under various operation conditions and membrane designs, providing the optimal operation conditions and membrane designs for maximizing the BPM performance at high current densities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SATone应助喝下午茶的狗采纳,获得10
1秒前
可爱的函函应助小满采纳,获得10
1秒前
2秒前
3秒前
寒冷兔子发布了新的文献求助10
3秒前
4秒前
lisz77完成签到 ,获得积分10
5秒前
隐形的寄云完成签到,获得积分10
5秒前
zgf完成签到,获得积分10
7秒前
牛德子发布了新的文献求助10
7秒前
8秒前
科研通AI2S应助多多采纳,获得10
8秒前
栗子完成签到,获得积分10
8秒前
tjzbw完成签到,获得积分10
9秒前
huihui应助初之采纳,获得10
9秒前
整齐的大开应助wanfeng采纳,获得10
10秒前
10秒前
taoyun完成签到,获得积分20
11秒前
13秒前
Zhang发布了新的文献求助10
13秒前
大雨完成签到,获得积分10
13秒前
丰知然应助cy采纳,获得10
13秒前
frankk完成签到,获得积分10
14秒前
一_发布了新的文献求助10
14秒前
李爱国应助chu采纳,获得30
14秒前
俭朴尔竹发布了新的文献求助10
15秒前
傅宣完成签到 ,获得积分10
16秒前
mumu发布了新的文献求助10
17秒前
慕青应助寒冷兔子采纳,获得10
18秒前
20秒前
lizzie完成签到,获得积分10
21秒前
22秒前
BruceKKKK完成签到,获得积分10
23秒前
顾矜应助dmhsds采纳,获得10
24秒前
彭于晏应助Zhang采纳,获得10
24秒前
传奇3应助poary采纳,获得10
24秒前
胡老大发布了新的文献求助10
25秒前
25秒前
25秒前
多多完成签到,获得积分20
25秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206956
求助须知:如何正确求助?哪些是违规求助? 2856304
关于积分的说明 8104016
捐赠科研通 2521498
什么是DOI,文献DOI怎么找? 1354593
科研通“疑难数据库(出版商)”最低求助积分说明 642050
邀请新用户注册赠送积分活动 613292