亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Neural Mechanism Underlying Visual Working Memory Training and Its Limited Transfer Effect

工作记忆 心理学 脑电图 任务(项目管理) 工作记忆训练 方向(向量空间) 认知心理学 认知 学习迁移 刺激(心理学) 培训转移 人工智能 计算机科学 发展心理学 神经科学 数学 经济 管理 几何学
作者
Ying Cai,Can Yang,Sisi Wang,Gui Xue
出处
期刊:Journal of Cognitive Neuroscience [The MIT Press]
卷期号:34 (11): 2082-2099 被引量:2
标识
DOI:10.1162/jocn_a_01897
摘要

Visual working memory (VWM) training has been shown to improve performance in trained tasks with limited transfer to untrained tasks. The neural mechanism underlying this limited transfer remains unknown. In the present study, this issue was addressed by combining model-fitting methods with EEG recordings. Participants were trained on a color delay estimation task for 12 consecutive 1-hr sessions, and the transfer effect was evaluated with an orientation change detection task. The EEG responses during both tasks were collected in a pretraining test, a posttraining test conducted 1 day after training, and a follow-up test conducted 3 months after training. According to our model-fitting results, training significantly improved the capacity but not the precision of color working memory (WM), and this capacity improvement did not transfer to the orientation change detection task, spatial 2-back task, symmetry span task, or Raven reasoning test. The EEG results revealed that training resulted in a specific and sustained increase in parietal theta power suppression in the color WM task, which reflected individual color WM capacity. In contrast, the increase in parietal-temporal alpha power, which reflected individual orientation WM capacity, did not change with training. Together, these findings suggest that the simultaneous change of stimulus type and task structure would modulate the cognitive and neural substrates of WM tasks and introduce additional constraints for the transfer of WM training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
阿婧完成签到 ,获得积分10
15秒前
里昂完成签到,获得积分10
34秒前
54秒前
1分钟前
1分钟前
姗姗发布了新的文献求助10
1分钟前
英俊的铭应助姗姗采纳,获得30
2分钟前
姗姗完成签到,获得积分10
2分钟前
852应助堪冷之采纳,获得30
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
fangye发布了新的文献求助100
3分钟前
4分钟前
xingsixs完成签到 ,获得积分10
4分钟前
整齐的不评完成签到,获得积分10
4分钟前
李健的小迷弟应助xl采纳,获得10
5分钟前
可夫司机完成签到 ,获得积分10
5分钟前
Yian应助科研通管家采纳,获得10
5分钟前
5分钟前
xl发布了新的文献求助10
5分钟前
fangye完成签到,获得积分10
5分钟前
6分钟前
王洋发布了新的文献求助10
6分钟前
6分钟前
xinxin0902发布了新的文献求助10
6分钟前
xinxin0902完成签到,获得积分10
6分钟前
sissiarno应助科研通管家采纳,获得30
7分钟前
温柔板栗应助科研通管家采纳,获得10
7分钟前
sissiarno应助科研通管家采纳,获得30
7分钟前
8分钟前
堪冷之发布了新的文献求助30
8分钟前
科研通AI6应助堪冷之采纳,获得10
9分钟前
堪冷之完成签到,获得积分10
9分钟前
sissiarno应助科研通管家采纳,获得30
9分钟前
无用的老董西完成签到 ,获得积分10
10分钟前
10分钟前
weibo完成签到,获得积分10
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292441
求助须知:如何正确求助?哪些是违规求助? 4442998
关于积分的说明 13830773
捐赠科研通 4326410
什么是DOI,文献DOI怎么找? 2374844
邀请新用户注册赠送积分活动 1370182
关于科研通互助平台的介绍 1334641