Automated Lung Cancer Segmentation Using a PET and CT Dual-Modality Deep Learning Neural Network

人工智能 医学 分割 Sørensen–骰子系数 豪斯多夫距离 卷积神经网络 模式识别(心理学) 深度学习 正电子发射断层摄影术 基本事实 模态(人机交互) 特征(语言学) 肺癌 相似性(几何) 核医学 反褶积 人工神经网络 图像分割 计算机科学 算法 图像(数学) 病理 哲学 语言学
作者
Siqiu Wang,R.N. Mahon,Elisabeth Weiss,Nuzhat Jan,Ross James Taylor,Philip Reed McDonagh,Bridget Quinn,L. Yuan
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:115 (2): 529-539 被引量:10
标识
DOI:10.1016/j.ijrobp.2022.07.2312
摘要

To develop an automated lung tumor segmentation method for radiation therapy planning based on deep learning and dual-modality positron emission tomography (PET) and computed tomography (CT) images.A 3-dimensional (3D) convolutional neural network using inputs from diagnostic PETs and simulation CTs was constructed with 2 parallel convolution paths for independent feature extraction at multiple resolution levels and a single deconvolution path. At each resolution level, the extracted features from the convolution arms were concatenated and fed through the skip connections into the deconvolution path that produced the tumor segmentation. Our network was trained/validated/tested by a 3:1:1 split on 290 pairs of PET and CT images from patients with lung cancer treated at our clinic, with manual physician contours as the ground truth. A stratified training strategy based on the magnitude of the gross tumor volume (GTV) was investigated to improve performance, especially for small tumors. Multiple radiation oncologists assessed the clinical acceptability of the network-produced segmentations.The mean Dice similarity coefficient, Hausdorff distance, and bidirectional local distance comparing manual versus automated contours were 0.79 ± 0.10, 5.8 ± 3.2 mm, and 2.8 ± 1.5 mm for the unstratified 3D dual-modality model. Stratification delivered the best results when the model for the large GTVs (>25 mL) was trained with all-size GTVs and the model for the small GTVs (<25 mL) was trained with small GTVs only. The best combined Dice similarity coefficient, Hausdorff distance, and bidirectional local distance from the 2 stratified models on their corresponding test data sets were 0.83 ± 0.07, 5.9 ± 2.5 mm, and 2.8 ± 1.4 mm, respectively. In the multiobserver review, 91.25% manual versus 88.75% automatic contours were accepted or accepted with modifications.By using an expansive clinical PET and CT image database and a dual-modality architecture, the proposed 3D network with a novel GTVbased stratification strategy generated clinically useful lung cancer contours that were highly acceptable on physician review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
00完成签到,获得积分10
刚刚
1秒前
怡然乌发布了新的文献求助10
4秒前
摸俞发布了新的文献求助10
4秒前
lamer完成签到,获得积分10
4秒前
pfuhh发布了新的文献求助10
5秒前
QQ完成签到,获得积分10
5秒前
yshu完成签到,获得积分10
6秒前
7秒前
大个应助朝朝采纳,获得10
7秒前
7秒前
韩菲菲关注了科研通微信公众号
8秒前
Rachel发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
Lucas应助风趣的凝雁采纳,获得10
12秒前
zhuyao完成签到 ,获得积分10
12秒前
q792309106发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
航某人完成签到,获得积分10
15秒前
16秒前
17秒前
18秒前
18秒前
科研通AI5应助wangruiyang采纳,获得10
18秒前
云辞忧发布了新的文献求助10
19秒前
斯文败类应助纷纭采纳,获得10
20秒前
霍凡白完成签到,获得积分10
21秒前
21秒前
朝朝发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
Jin_Xin发布了新的文献求助20
24秒前
英俊绝义发布了新的文献求助30
26秒前
27秒前
脑洞疼应助风趣的凝雁采纳,获得10
28秒前
在水一方应助滴滴答采纳,获得10
28秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144