已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated Lung Cancer Segmentation Using a PET and CT Dual-Modality Deep Learning Neural Network

人工智能 医学 分割 Sørensen–骰子系数 豪斯多夫距离 卷积神经网络 模式识别(心理学) 深度学习 正电子发射断层摄影术 基本事实 模态(人机交互) 特征(语言学) 肺癌 相似性(几何) 核医学 反褶积 人工神经网络 图像分割 计算机科学 算法 图像(数学) 病理 哲学 语言学
作者
Siqiu Wang,R.N. Mahon,Elisabeth Weiss,Nuzhat Jan,Ross James Taylor,Philip Reed McDonagh,Bridget Quinn,L. Yuan
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:115 (2): 529-539 被引量:10
标识
DOI:10.1016/j.ijrobp.2022.07.2312
摘要

To develop an automated lung tumor segmentation method for radiation therapy planning based on deep learning and dual-modality positron emission tomography (PET) and computed tomography (CT) images.A 3-dimensional (3D) convolutional neural network using inputs from diagnostic PETs and simulation CTs was constructed with 2 parallel convolution paths for independent feature extraction at multiple resolution levels and a single deconvolution path. At each resolution level, the extracted features from the convolution arms were concatenated and fed through the skip connections into the deconvolution path that produced the tumor segmentation. Our network was trained/validated/tested by a 3:1:1 split on 290 pairs of PET and CT images from patients with lung cancer treated at our clinic, with manual physician contours as the ground truth. A stratified training strategy based on the magnitude of the gross tumor volume (GTV) was investigated to improve performance, especially for small tumors. Multiple radiation oncologists assessed the clinical acceptability of the network-produced segmentations.The mean Dice similarity coefficient, Hausdorff distance, and bidirectional local distance comparing manual versus automated contours were 0.79 ± 0.10, 5.8 ± 3.2 mm, and 2.8 ± 1.5 mm for the unstratified 3D dual-modality model. Stratification delivered the best results when the model for the large GTVs (>25 mL) was trained with all-size GTVs and the model for the small GTVs (<25 mL) was trained with small GTVs only. The best combined Dice similarity coefficient, Hausdorff distance, and bidirectional local distance from the 2 stratified models on their corresponding test data sets were 0.83 ± 0.07, 5.9 ± 2.5 mm, and 2.8 ± 1.4 mm, respectively. In the multiobserver review, 91.25% manual versus 88.75% automatic contours were accepted or accepted with modifications.By using an expansive clinical PET and CT image database and a dual-modality architecture, the proposed 3D network with a novel GTVbased stratification strategy generated clinically useful lung cancer contours that were highly acceptable on physician review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助张泽宇采纳,获得10
刚刚
Akim应助薄志远采纳,获得10
刚刚
hjy发布了新的文献求助10
刚刚
1秒前
GggCCCcccc发布了新的文献求助10
4秒前
李健应助一顿吃不饱采纳,获得10
5秒前
鹿不可发布了新的文献求助10
5秒前
Hello应助顺利的依风采纳,获得10
5秒前
浮游应助沉静的白猫采纳,获得10
5秒前
刘若鑫完成签到 ,获得积分10
5秒前
7秒前
8秒前
8秒前
9秒前
9秒前
酷波er应助鹿不可采纳,获得10
9秒前
10秒前
谦让的焱发布了新的文献求助10
12秒前
Wilddeer完成签到 ,获得积分10
13秒前
陈一星发布了新的文献求助10
14秒前
14秒前
squrreil发布了新的文献求助10
16秒前
zhang值发布了新的文献求助10
21秒前
orixero应助天真的鼠标采纳,获得10
22秒前
小梦完成签到,获得积分10
22秒前
科小白完成签到 ,获得积分10
23秒前
23秒前
林乐应助vv采纳,获得10
26秒前
张大泽同学完成签到 ,获得积分10
27秒前
27秒前
蛋肠加蛋发布了新的文献求助10
28秒前
29秒前
一介尘埃完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助30
29秒前
30秒前
小米粥发布了新的文献求助10
33秒前
云风完成签到,获得积分10
33秒前
33秒前
彼岸发布了新的文献求助10
34秒前
会飞的包子完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934621
求助须知:如何正确求助?哪些是违规求助? 4202448
关于积分的说明 13057403
捐赠科研通 3976780
什么是DOI,文献DOI怎么找? 2179205
邀请新用户注册赠送积分活动 1195431
关于科研通互助平台的介绍 1106771