Automated Lung Cancer Segmentation Using a PET and CT Dual-Modality Deep Learning Neural Network

人工智能 医学 分割 Sørensen–骰子系数 豪斯多夫距离 卷积神经网络 模式识别(心理学) 深度学习 正电子发射断层摄影术 基本事实 模态(人机交互) 特征(语言学) 肺癌 相似性(几何) 核医学 反褶积 人工神经网络 图像分割 计算机科学 算法 图像(数学) 病理 哲学 语言学
作者
Siqiu Wang,R.N. Mahon,Elisabeth Weiss,Nuzhat Jan,Ross James Taylor,Philip Reed McDonagh,Bridget Quinn,L. Yuan
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:115 (2): 529-539 被引量:21
标识
DOI:10.1016/j.ijrobp.2022.07.2312
摘要

To develop an automated lung tumor segmentation method for radiation therapy planning based on deep learning and dual-modality positron emission tomography (PET) and computed tomography (CT) images.A 3-dimensional (3D) convolutional neural network using inputs from diagnostic PETs and simulation CTs was constructed with 2 parallel convolution paths for independent feature extraction at multiple resolution levels and a single deconvolution path. At each resolution level, the extracted features from the convolution arms were concatenated and fed through the skip connections into the deconvolution path that produced the tumor segmentation. Our network was trained/validated/tested by a 3:1:1 split on 290 pairs of PET and CT images from patients with lung cancer treated at our clinic, with manual physician contours as the ground truth. A stratified training strategy based on the magnitude of the gross tumor volume (GTV) was investigated to improve performance, especially for small tumors. Multiple radiation oncologists assessed the clinical acceptability of the network-produced segmentations.The mean Dice similarity coefficient, Hausdorff distance, and bidirectional local distance comparing manual versus automated contours were 0.79 ± 0.10, 5.8 ± 3.2 mm, and 2.8 ± 1.5 mm for the unstratified 3D dual-modality model. Stratification delivered the best results when the model for the large GTVs (>25 mL) was trained with all-size GTVs and the model for the small GTVs (<25 mL) was trained with small GTVs only. The best combined Dice similarity coefficient, Hausdorff distance, and bidirectional local distance from the 2 stratified models on their corresponding test data sets were 0.83 ± 0.07, 5.9 ± 2.5 mm, and 2.8 ± 1.4 mm, respectively. In the multiobserver review, 91.25% manual versus 88.75% automatic contours were accepted or accepted with modifications.By using an expansive clinical PET and CT image database and a dual-modality architecture, the proposed 3D network with a novel GTVbased stratification strategy generated clinically useful lung cancer contours that were highly acceptable on physician review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkPi发布了新的文献求助10
1秒前
无语的大碗完成签到,获得积分10
2秒前
英吉利25发布了新的文献求助50
3秒前
3秒前
私欲宝宝发布了新的文献求助10
4秒前
傲娇时光完成签到,获得积分10
4秒前
Akim应助kkPi采纳,获得10
5秒前
紫丁香完成签到 ,获得积分10
6秒前
四叶草哦完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
机智乐蕊完成签到,获得积分10
8秒前
9秒前
故事细腻完成签到 ,获得积分10
9秒前
Zzy0816完成签到,获得积分10
9秒前
棉花完成签到 ,获得积分10
9秒前
无极微光应助学术牛马采纳,获得20
9秒前
10秒前
nanjiab发布了新的文献求助10
10秒前
10秒前
山雀完成签到,获得积分10
12秒前
任炳成完成签到,获得积分20
13秒前
Rowan发布了新的文献求助10
13秒前
kkkkpoa完成签到,获得积分10
14秒前
善良水池完成签到,获得积分10
14秒前
15秒前
Lucy发布了新的文献求助10
15秒前
15秒前
完美世界应助bbbjddd采纳,获得10
15秒前
忧伤的映阳完成签到 ,获得积分10
16秒前
zbaby发布了新的文献求助10
16秒前
16秒前
16秒前
Ava应助笑点低的静竹采纳,获得10
17秒前
Orange应助坚强的访蕊采纳,获得10
18秒前
受伤毛豆完成签到,获得积分10
18秒前
酷波er应助私欲宝宝采纳,获得10
18秒前
后知后觉发布了新的文献求助10
19秒前
20秒前
DD发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600957
求助须知:如何正确求助?哪些是违规求助? 4686530
关于积分的说明 14844417
捐赠科研通 4679086
什么是DOI,文献DOI怎么找? 2539100
邀请新用户注册赠送积分活动 1505992
关于科研通互助平台的介绍 1471252