亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Lung Cancer Segmentation Using a PET and CT Dual-Modality Deep Learning Neural Network

人工智能 医学 分割 Sørensen–骰子系数 豪斯多夫距离 卷积神经网络 模式识别(心理学) 深度学习 正电子发射断层摄影术 基本事实 模态(人机交互) 特征(语言学) 肺癌 相似性(几何) 核医学 反褶积 人工神经网络 图像分割 计算机科学 算法 图像(数学) 病理 哲学 语言学
作者
Siqiu Wang,R.N. Mahon,Elisabeth Weiss,Nuzhat Jan,Ross James Taylor,Philip Reed McDonagh,Bridget Quinn,L. Yuan
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:115 (2): 529-539 被引量:23
标识
DOI:10.1016/j.ijrobp.2022.07.2312
摘要

To develop an automated lung tumor segmentation method for radiation therapy planning based on deep learning and dual-modality positron emission tomography (PET) and computed tomography (CT) images.A 3-dimensional (3D) convolutional neural network using inputs from diagnostic PETs and simulation CTs was constructed with 2 parallel convolution paths for independent feature extraction at multiple resolution levels and a single deconvolution path. At each resolution level, the extracted features from the convolution arms were concatenated and fed through the skip connections into the deconvolution path that produced the tumor segmentation. Our network was trained/validated/tested by a 3:1:1 split on 290 pairs of PET and CT images from patients with lung cancer treated at our clinic, with manual physician contours as the ground truth. A stratified training strategy based on the magnitude of the gross tumor volume (GTV) was investigated to improve performance, especially for small tumors. Multiple radiation oncologists assessed the clinical acceptability of the network-produced segmentations.The mean Dice similarity coefficient, Hausdorff distance, and bidirectional local distance comparing manual versus automated contours were 0.79 ± 0.10, 5.8 ± 3.2 mm, and 2.8 ± 1.5 mm for the unstratified 3D dual-modality model. Stratification delivered the best results when the model for the large GTVs (>25 mL) was trained with all-size GTVs and the model for the small GTVs (<25 mL) was trained with small GTVs only. The best combined Dice similarity coefficient, Hausdorff distance, and bidirectional local distance from the 2 stratified models on their corresponding test data sets were 0.83 ± 0.07, 5.9 ± 2.5 mm, and 2.8 ± 1.4 mm, respectively. In the multiobserver review, 91.25% manual versus 88.75% automatic contours were accepted or accepted with modifications.By using an expansive clinical PET and CT image database and a dual-modality architecture, the proposed 3D network with a novel GTVbased stratification strategy generated clinically useful lung cancer contours that were highly acceptable on physician review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
8秒前
浮岫发布了新的文献求助10
10秒前
浮岫完成签到 ,获得积分10
22秒前
26秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
丘比特应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
31秒前
32秒前
rebeycca发布了新的文献求助10
38秒前
奋斗的马里奥完成签到,获得积分10
53秒前
量子星尘发布了新的文献求助10
1分钟前
lei完成签到,获得积分20
1分钟前
跳跃紫真完成签到,获得积分10
1分钟前
CodeCraft应助lei采纳,获得10
1分钟前
大玉124完成签到 ,获得积分10
2分钟前
2分钟前
刘菲特1发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
yr应助科研通管家采纳,获得10
2分钟前
co完成签到,获得积分10
2分钟前
gszy1975发布了新的文献求助10
2分钟前
香蕉觅云应助飞常爱你哦采纳,获得10
2分钟前
2分钟前
2分钟前
跳跃紫真发布了新的文献求助10
2分钟前
LeeHx完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
桃子e发布了新的文献求助10
3分钟前
德芙纵向丝滑完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780432
求助须知:如何正确求助?哪些是违规求助? 5655379
关于积分的说明 15453107
捐赠科研通 4911067
什么是DOI,文献DOI怎么找? 2643243
邀请新用户注册赠送积分活动 1590906
关于科研通互助平台的介绍 1545439