MambaRetinaNet: A Multi-Scale Convolution and Mamba Fusion-Based Remote Sensing Object Detection Model

比例(比率) 卷积(计算机科学) 对象(语法) 计算机科学 融合 人工智能 遥感 计算机视觉 地理 地图学 语言学 哲学 人工神经网络
作者
Junjie Chen,Wei Jiang,Gang Wu,Jichang Yang,Jiandong Shang,Hengliang Guo,Dujuan Zhang,Shengguang Zhu
标识
DOI:10.20944/preprints202503.2267.v1
摘要

Affected by complex backgrounds and multi-scale object characteristics, object detection in remote sensing images faces significant challenges in accuracy. Despite advancements in the methods utilizing convolutional neural networks (CNN) and self-attention, they encounter two fundamental challenges: CNNs are restricted by their limited receptive fields, giving rise to inadequate global feature representation, whereas self-attention mechanisms, while adept at capturing long-range dependencies, suffer from heightened computational complexity that hampers practical application efficiency and may diminish the representation of local detail features. To resolve these challenges, this article proposed an innovative CNN-Mamba fusion-based detection model —MambaRetinanet— which uses a well-designed synergistic perception module (SPM) to efficiently model the global information and enhance the extraction of local features. In addition, for improving the feature pyramid network (FPN), we introduced a differentiated feature processing strategy and designed an asymmetric feature pyramid—MambFPN—based on this strategy to balance detection accuracy and computational efficiency. The experimental results indicate that MambaRetinanet has significant advantages on four mainstream remote sensing datasets: the mean Average precision (mAP) on DOTA-v1.0, DOTA-v1.5, DOTA-v2.0 and DIOR-R datasets reached 77.50, 70.21, 57.17 and 71.50 respectively, which is an average increase of 11% in comparison to that of the baseline. Notably, on the DOTA-v2.0 dataset, MambaRetinanet demonstrates advantages over the current one stage SOTA model, enhancing mAP scores by approximately 2 percentage points, thereby validating the efficacy and generalizability of the MambaRetinaNet in complex remote sensing scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
monoklatt完成签到,获得积分10
刚刚
虚心半莲发布了新的文献求助10
1秒前
海阔天空发布了新的文献求助10
1秒前
1秒前
飞鱼发布了新的文献求助10
2秒前
哄哄完成签到,获得积分10
2秒前
Hello应助Yw zhang采纳,获得10
2秒前
Hello应助哼哼哈嘿采纳,获得10
2秒前
3秒前
zyy完成签到,获得积分10
3秒前
pbj发布了新的文献求助10
3秒前
4秒前
chenjie完成签到,获得积分10
5秒前
过河卒子完成签到,获得积分10
5秒前
yyyyyy完成签到 ,获得积分10
6秒前
6秒前
7秒前
wanghuihui发布了新的文献求助10
7秒前
Hello应助巍巍学长采纳,获得10
7秒前
冉柒发布了新的文献求助10
7秒前
甜甜千兰完成签到,获得积分10
8秒前
科研通AI5应助pbj采纳,获得10
8秒前
三月关注了科研通微信公众号
9秒前
x1981完成签到,获得积分10
10秒前
11秒前
yi完成签到 ,获得积分10
11秒前
11秒前
活泼的小伙完成签到,获得积分20
12秒前
岳粤完成签到 ,获得积分20
12秒前
欢呼的念瑶完成签到,获得积分10
12秒前
13秒前
棖0921发布了新的文献求助10
13秒前
13秒前
NexusExplorer应助啦啦啦采纳,获得10
13秒前
零度寂寞3166完成签到,获得积分10
14秒前
human完成签到,获得积分10
14秒前
Yuan应助MajorTom采纳,获得10
14秒前
pbj完成签到,获得积分10
14秒前
深情安青应助wanghuihui采纳,获得10
15秒前
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729613
求助须知:如何正确求助?哪些是违规求助? 3274653
关于积分的说明 9987684
捐赠科研通 2989926
什么是DOI,文献DOI怎么找? 1640809
邀请新用户注册赠送积分活动 779408
科研通“疑难数据库(出版商)”最低求助积分说明 748217