已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on multi-objective optimization of building energy efficiency based on energy consumption and thermal comfort

热舒适性 能源消耗 建筑工程 高效能源利用 能量(信号处理) 消费(社会学) 计算机科学 环境科学 工程类 电气工程 数学 物理 社会学 社会科学 热力学 统计
作者
Hu Jun,Fei Hu
出处
期刊:Building Services Engineering Research and Technology [SAGE Publishing]
卷期号:45 (4): 391-411
标识
DOI:10.1177/01436244241240066
摘要

Building design optimization (BDO) provides an approach for decreasing global energy consumption and achieving the goal of carbon neutrality. However, energy efficiency and comfort performance are two conflicting objectives when making optimal building design schemes. This study proposes a surrogate model-based multiple-objective optimization framework to balance the conflicting objectives and obtain an optimal design scheme for buildings. Firstly, an energy simulation model for generating energy consumption and design parameters is constructed, and the obtained data are utilized to train the surrogate model with the random forest (RF) algorithm. Then, multi-objective optimization algorithms are employed to generate a set of alternative plans for building schemes and determine the optimal building design solutions that can equilibrate the requirements for both energy conservation and building comfort. To verify the proposed optimization method in this paper, a residential building in Suzhou was selected as a case study. The study considered 10 building design parameters that are related to energy efficiency and thermal comfort. The results indicate that the RF surrogate model accurately predicts energy consumption, with a predicted MSE of 0.00012 and R2 of 0.99. In evaluating the Pareto set size, Pareto solution diversity, Pareto front proximity, and best solution quality, NSGA-II proved to be the most effective optimization algorithm for BDO problems. The final optimal solution of design parameters obtained by NSGA-II obviously improves the building performance of comfort and energy efficiency, and the results of the performance evaluation for different optimization algorithms provide guidance to make decisions on suitable algorithms and hyperparameter settings based on the greatest preference of the performance criteria. This study will help determine the best design options for buildings to achieve better energy efficiency in sustainable development and provide reference for similar projects. Practical applications This research makes valuable contributions in the following aspects:(a) It establishes a multi-objective optimization design model for a virtual building environment. This enables the visualization and digitization of the building model and further facilitates the transformation of the optimization model, thereby providing users with convenient decision-making tools; (b) The study provides designers and other stakeholders with comprehensive simulation-based analysis results and optimization techniques. These tools aid in making energy-saving multi-objective optimization decisions;(c) The research compares various optimization algorithms and presents their strengths and limitations, which will help designers select suitable algorithms based on practical requirements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Journey发布了新的文献求助10
1秒前
hsyyk完成签到,获得积分10
1秒前
tleeny发布了新的文献求助10
2秒前
作业质检员完成签到 ,获得积分10
2秒前
6秒前
培a发布了新的文献求助10
8秒前
浮游应助shirley采纳,获得10
9秒前
10秒前
蓝色天空发布了新的文献求助10
12秒前
13秒前
bbbbuuuoo完成签到,获得积分20
13秒前
13秒前
15秒前
悦耳连碧完成签到 ,获得积分10
18秒前
Criminology34应助竹叶青采纳,获得50
19秒前
21秒前
21秒前
王金霞发布了新的文献求助10
21秒前
悦耳连碧关注了科研通微信公众号
21秒前
江宜完成签到 ,获得积分10
22秒前
23秒前
品品完成签到,获得积分10
23秒前
裘香芦完成签到,获得积分20
23秒前
871004188完成签到,获得积分10
23秒前
24秒前
24秒前
Lauren发布了新的文献求助10
24秒前
咕咕咕完成签到,获得积分10
24秒前
乐悠发布了新的文献求助10
27秒前
小刘医生发布了新的文献求助10
27秒前
云槿发布了新的文献求助10
27秒前
NexusExplorer应助jy采纳,获得10
28秒前
JX发布了新的文献求助50
31秒前
Affenyi发布了新的文献求助10
32秒前
33秒前
壮观乘云发布了新的文献求助10
33秒前
Liekkas发布了新的文献求助50
35秒前
36秒前
搜集达人应助王金霞采纳,获得10
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355792
求助须知:如何正确求助?哪些是违规求助? 4487641
关于积分的说明 13970761
捐赠科研通 4388399
什么是DOI,文献DOI怎么找? 2411058
邀请新用户注册赠送积分活动 1403632
关于科研通互助平台的介绍 1377189