Research on multi-objective optimization of building energy efficiency based on energy consumption and thermal comfort

热舒适性 能源消耗 建筑工程 高效能源利用 能量(信号处理) 消费(社会学) 计算机科学 环境科学 工程类 电气工程 数学 物理 社会学 社会科学 统计 热力学
作者
Hu Jun,Fei Hu
出处
期刊:Building Services Engineering Research and Technology [SAGE]
卷期号:45 (4): 391-411
标识
DOI:10.1177/01436244241240066
摘要

Building design optimization (BDO) provides an approach for decreasing global energy consumption and achieving the goal of carbon neutrality. However, energy efficiency and comfort performance are two conflicting objectives when making optimal building design schemes. This study proposes a surrogate model-based multiple-objective optimization framework to balance the conflicting objectives and obtain an optimal design scheme for buildings. Firstly, an energy simulation model for generating energy consumption and design parameters is constructed, and the obtained data are utilized to train the surrogate model with the random forest (RF) algorithm. Then, multi-objective optimization algorithms are employed to generate a set of alternative plans for building schemes and determine the optimal building design solutions that can equilibrate the requirements for both energy conservation and building comfort. To verify the proposed optimization method in this paper, a residential building in Suzhou was selected as a case study. The study considered 10 building design parameters that are related to energy efficiency and thermal comfort. The results indicate that the RF surrogate model accurately predicts energy consumption, with a predicted MSE of 0.00012 and R2 of 0.99. In evaluating the Pareto set size, Pareto solution diversity, Pareto front proximity, and best solution quality, NSGA-II proved to be the most effective optimization algorithm for BDO problems. The final optimal solution of design parameters obtained by NSGA-II obviously improves the building performance of comfort and energy efficiency, and the results of the performance evaluation for different optimization algorithms provide guidance to make decisions on suitable algorithms and hyperparameter settings based on the greatest preference of the performance criteria. This study will help determine the best design options for buildings to achieve better energy efficiency in sustainable development and provide reference for similar projects. Practical applications This research makes valuable contributions in the following aspects:(a) It establishes a multi-objective optimization design model for a virtual building environment. This enables the visualization and digitization of the building model and further facilitates the transformation of the optimization model, thereby providing users with convenient decision-making tools; (b) The study provides designers and other stakeholders with comprehensive simulation-based analysis results and optimization techniques. These tools aid in making energy-saving multi-objective optimization decisions;(c) The research compares various optimization algorithms and presents their strengths and limitations, which will help designers select suitable algorithms based on practical requirements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
langkanpu发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
devil发布了新的文献求助50
1秒前
1秒前
1秒前
jl发布了新的文献求助10
1秒前
2秒前
梁皓然发布了新的文献求助10
2秒前
甘振豪发布了新的文献求助10
2秒前
wuuToiiin完成签到,获得积分10
3秒前
杨一乐发布了新的文献求助50
3秒前
咖啡酸醋冰完成签到,获得积分10
3秒前
幽默的方盒完成签到,获得积分10
3秒前
3秒前
爆米花应助灵巧的山水采纳,获得10
4秒前
4秒前
iW发布了新的文献求助10
5秒前
lucky发布了新的文献求助10
5秒前
朴素访琴完成签到 ,获得积分10
5秒前
5秒前
longyuyan完成签到,获得积分10
6秒前
6秒前
6秒前
Rec完成签到 ,获得积分10
6秒前
虎啊虎啊发布了新的文献求助10
7秒前
周婷发布了新的文献求助10
7秒前
夜神月发布了新的文献求助10
7秒前
7秒前
7秒前
HCL发布了新的文献求助10
7秒前
8秒前
wushuwen完成签到,获得积分10
8秒前
8秒前
langkanpu完成签到,获得积分10
8秒前
9秒前
9秒前
大一京城完成签到 ,获得积分10
9秒前
小马甲应助辛勤面包采纳,获得30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836