Research on multi-objective optimization of building energy efficiency based on energy consumption and thermal comfort

热舒适性 能源消耗 建筑工程 高效能源利用 能量(信号处理) 消费(社会学) 计算机科学 环境科学 工程类 电气工程 数学 物理 社会学 社会科学 统计 热力学
作者
Hu Jun,Fei Hu
出处
期刊:Building Services Engineering Research and Technology [SAGE]
卷期号:45 (4): 391-411
标识
DOI:10.1177/01436244241240066
摘要

Building design optimization (BDO) provides an approach for decreasing global energy consumption and achieving the goal of carbon neutrality. However, energy efficiency and comfort performance are two conflicting objectives when making optimal building design schemes. This study proposes a surrogate model-based multiple-objective optimization framework to balance the conflicting objectives and obtain an optimal design scheme for buildings. Firstly, an energy simulation model for generating energy consumption and design parameters is constructed, and the obtained data are utilized to train the surrogate model with the random forest (RF) algorithm. Then, multi-objective optimization algorithms are employed to generate a set of alternative plans for building schemes and determine the optimal building design solutions that can equilibrate the requirements for both energy conservation and building comfort. To verify the proposed optimization method in this paper, a residential building in Suzhou was selected as a case study. The study considered 10 building design parameters that are related to energy efficiency and thermal comfort. The results indicate that the RF surrogate model accurately predicts energy consumption, with a predicted MSE of 0.00012 and R2 of 0.99. In evaluating the Pareto set size, Pareto solution diversity, Pareto front proximity, and best solution quality, NSGA-II proved to be the most effective optimization algorithm for BDO problems. The final optimal solution of design parameters obtained by NSGA-II obviously improves the building performance of comfort and energy efficiency, and the results of the performance evaluation for different optimization algorithms provide guidance to make decisions on suitable algorithms and hyperparameter settings based on the greatest preference of the performance criteria. This study will help determine the best design options for buildings to achieve better energy efficiency in sustainable development and provide reference for similar projects. Practical applications This research makes valuable contributions in the following aspects:(a) It establishes a multi-objective optimization design model for a virtual building environment. This enables the visualization and digitization of the building model and further facilitates the transformation of the optimization model, thereby providing users with convenient decision-making tools; (b) The study provides designers and other stakeholders with comprehensive simulation-based analysis results and optimization techniques. These tools aid in making energy-saving multi-objective optimization decisions;(c) The research compares various optimization algorithms and presents their strengths and limitations, which will help designers select suitable algorithms based on practical requirements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
搜集达人应助糊涂的小伙采纳,获得10
1秒前
mmd完成签到 ,获得积分10
2秒前
2秒前
Lily完成签到,获得积分10
3秒前
温言发布了新的文献求助10
4秒前
4秒前
Roy完成签到,获得积分10
4秒前
永远少年完成签到,获得积分10
6秒前
niu1发布了新的文献求助10
6秒前
7秒前
Danny完成签到,获得积分10
7秒前
Lsx完成签到 ,获得积分10
7秒前
又胖了发布了新的文献求助10
8秒前
8秒前
小小飞发布了新的文献求助20
9秒前
9秒前
9秒前
10秒前
wanci应助NorthWang采纳,获得10
10秒前
zhen完成签到,获得积分10
12秒前
ns发布了新的文献求助30
13秒前
14秒前
逐风完成签到,获得积分10
14秒前
无奈的酒窝完成签到,获得积分10
15秒前
15秒前
16秒前
blingbling发布了新的文献求助10
16秒前
今后应助SherlockLiu采纳,获得30
18秒前
daniel发布了新的文献求助10
18秒前
Jason应助温言采纳,获得20
19秒前
逐风发布了新的文献求助30
20秒前
hhzz发布了新的文献求助10
20秒前
日月轮回完成签到,获得积分10
21秒前
22秒前
Yimim发布了新的文献求助10
22秒前
小小li完成签到 ,获得积分10
22秒前
小蘑菇应助细腻晓露采纳,获得10
22秒前
又胖了完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808