SATF: A Scalable Attentive Transfer Framework for Efficient Multiagent Reinforcement Learning

强化学习 计算机科学 学习迁移 可扩展性 钢筋 人工智能 心理学 社会心理学 数据库
作者
Bin Chen,Zehong Cao,Quan Bai
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3387397
摘要

It is challenging to train an efficient learning procedure with multiagent reinforcement learning (MARL) when the number of agents increases as the observation space exponentially expands, especially in large-scale multiagent systems. In this article, we proposed a scalable attentive transfer framework (SATF) for efficient MARL, which achieved goals faster and more accurately in homogeneous and heterogeneous combat tasks by transferring learned knowledge from a small number of agents (4) to a large number of agents (up to 64). To reduce and align the dimensionality of the observed state variations caused by increasing numbers of agents, the proposed SATF deployed a novel state representation network with a self-attention mechanism, known as dynamic observation representation network (DorNet), to extract the dominant observed information with excellent cost-effectiveness. The experiments on the MAgent platform showed that the SATF outperformed the distributed MARL (independent Q-learning (IQL) and A2C) in task sequences from 8 to 64 agents. The experiments on StarCraft II showed that the SATF demonstrated superior performance relative to the centralized training with decentralized execution MARL (QMIX) by presenting shorter training steps, achieving a desired win rate of up to approximately 90% when increasing the number of agents from 4 to 32. The findings of our study showed the great potential for enhancing the efficiency of MARL training in large-scale agent combat missions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小野完成签到,获得积分20
1秒前
2秒前
2秒前
yangzai发布了新的文献求助10
3秒前
酷波er应助韩凡采纳,获得10
3秒前
4秒前
doublescome完成签到,获得积分10
4秒前
6秒前
仔wang完成签到,获得积分10
6秒前
Li发布了新的文献求助30
7秒前
yjjin完成签到,获得积分10
7秒前
wzswzs发布了新的文献求助10
8秒前
9秒前
阿楷发布了新的文献求助10
10秒前
林慕然2023发布了新的文献求助10
11秒前
小吴同志发布了新的文献求助10
11秒前
12秒前
xiax03完成签到,获得积分10
13秒前
Owen应助小榕采纳,获得10
14秒前
16秒前
lh完成签到,获得积分10
16秒前
efls发布了新的文献求助10
16秒前
NexusExplorer应助噜啦啦采纳,获得10
17秒前
zyc发布了新的文献求助10
17秒前
搜集达人应助洞幺拐采纳,获得10
19秒前
林慕然2023完成签到,获得积分10
19秒前
zzzzzzzzzzzz完成签到,获得积分10
19秒前
20秒前
淡淡的青柏完成签到,获得积分10
20秒前
20秒前
英吉利25发布了新的文献求助10
21秒前
zyc完成签到,获得积分10
23秒前
爆米花应助腼腆的洪纲采纳,获得10
23秒前
乐观的雨发布了新的文献求助10
23秒前
24秒前
24秒前
25秒前
25秒前
陈喜鸿发布了新的文献求助10
25秒前
FlipFlops完成签到,获得积分10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135734
捐赠科研通 3239863
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150