SATF: A Scalable Attentive Transfer Framework for Efficient Multiagent Reinforcement Learning

强化学习 计算机科学 学习迁移 可扩展性 钢筋 人工智能 心理学 社会心理学 数据库
作者
Bin Chen,Zehong Cao,Quan Bai
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3387397
摘要

It is challenging to train an efficient learning procedure with multiagent reinforcement learning (MARL) when the number of agents increases as the observation space exponentially expands, especially in large-scale multiagent systems. In this article, we proposed a scalable attentive transfer framework (SATF) for efficient MARL, which achieved goals faster and more accurately in homogeneous and heterogeneous combat tasks by transferring learned knowledge from a small number of agents (4) to a large number of agents (up to 64). To reduce and align the dimensionality of the observed state variations caused by increasing numbers of agents, the proposed SATF deployed a novel state representation network with a self-attention mechanism, known as dynamic observation representation network (DorNet), to extract the dominant observed information with excellent cost-effectiveness. The experiments on the MAgent platform showed that the SATF outperformed the distributed MARL (independent Q-learning (IQL) and A2C) in task sequences from 8 to 64 agents. The experiments on StarCraft II showed that the SATF demonstrated superior performance relative to the centralized training with decentralized execution MARL (QMIX) by presenting shorter training steps, achieving a desired win rate of up to approximately 90% when increasing the number of agents from 4 to 32. The findings of our study showed the great potential for enhancing the efficiency of MARL training in large-scale agent combat missions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LayM完成签到,获得积分20
2秒前
2秒前
可爱的函函应助AoAoo采纳,获得10
4秒前
徐涛完成签到,获得积分10
4秒前
monica项发布了新的文献求助10
4秒前
zhw完成签到,获得积分10
4秒前
阳光he完成签到,获得积分10
7秒前
Ooo发布了新的文献求助10
8秒前
番茄小超人2号完成签到 ,获得积分10
9秒前
litboy完成签到,获得积分10
9秒前
FashionBoy应助monica项采纳,获得10
9秒前
卷不动了发布了新的文献求助10
9秒前
Ava应助1874采纳,获得10
9秒前
10秒前
沙河口大长硬完成签到,获得积分10
11秒前
桔梗完成签到,获得积分10
13秒前
14秒前
能干的茗完成签到,获得积分10
14秒前
15秒前
15秒前
AoAoo发布了新的文献求助10
18秒前
卷不动了完成签到,获得积分10
18秒前
20秒前
20秒前
小芳芳发布了新的文献求助10
21秒前
MY20240406发布了新的文献求助10
21秒前
Remote发布了新的文献求助20
24秒前
xiao完成签到,获得积分10
25秒前
Owen应助lee采纳,获得10
25秒前
孔雀翎完成签到,获得积分10
25秒前
疯狂的冬瓜完成签到,获得积分10
26秒前
丘比特应助1874采纳,获得10
26秒前
善学以致用应助桃桃采纳,获得10
27秒前
Ohoooo完成签到,获得积分10
28秒前
Hello应助卡卡罗特采纳,获得10
29秒前
A3000完成签到,获得积分10
30秒前
zho应助AoAoo采纳,获得10
31秒前
sanmu给mzb的求助进行了留言
32秒前
能干的茗关注了科研通微信公众号
33秒前
joo完成签到,获得积分10
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159748
求助须知:如何正确求助?哪些是违规求助? 2810660
关于积分的说明 7889023
捐赠科研通 2469717
什么是DOI,文献DOI怎么找? 1315035
科研通“疑难数据库(出版商)”最低求助积分说明 630738
版权声明 602012