Spatial-temporal constraints for surface soil moisture mapping using Sentinel-1 and Sentinel-2 data over agricultural regions

环境科学 遥感 含水量 合成孔径雷达 空间分析 地理 地质学 岩土工程
作者
Yanan Zhou,WANG Binyao,Weiwei Zhu,Li Feng,HE Qi-sheng,Xin Zhang,Tianjun Wu,Nana Yan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108835-108835 被引量:5
标识
DOI:10.1016/j.compag.2024.108835
摘要

Surface soil moisture (SSM) information could have important applications in agricultural and regional water management. Remote sensing, particularly synthetic aperture radar (SAR), is an important technology for the estimation of spatial–temporal SSM over larger areas. Using Sentinel-1 and Sentinel-2 data, this research developed a general spatial–temporal constrained machine-learning-based method for surface soil moisture mapping over agricultural regions. Central to this method is the construction of spatial and temporal constraints and their implementation in machine-learning models. We first defined the spatial and temporal constraints for SSM estimation by investigating the spatial division of cultivated crop types and the temporal division of cumulative precipitation. Second, under the presumption that the SSM and associated variables are smoothly changing, we extracted the temporal difference variables from the multi-temporal remote sensing data. Finally, we incorporated two constraints as categorical features and temporal differences into a CatBoost-based model to improve surface soil moisture mapping. We verified the proposed model in a Spain study area with multi-temporal remote sensing observations. The experimental results after incorporating the spatial–temporal constraints demonstrate the efficacy of the proposed model for mapping surface soil moisture over agricultural regions, with significantly improved R2 = 0.7328, RMSE = 0.0451 vol, and MAE = 0.0351 vol This study also concluded that using multiple polarization in the machine-learning-based method could reliably and accurately estimate surface soil moisture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花陵发布了新的文献求助10
刚刚
小橘子完成签到,获得积分10
1秒前
积极的电话完成签到,获得积分10
1秒前
1秒前
刁刁发布了新的文献求助10
2秒前
科目三应助欢喜的跳跳糖采纳,获得10
2秒前
星星发布了新的文献求助10
2秒前
111发布了新的文献求助10
3秒前
Janson完成签到,获得积分10
3秒前
顾矜应助yu采纳,获得10
3秒前
3秒前
所所应助方超采纳,获得10
4秒前
4秒前
搜集达人应助mmy采纳,获得10
4秒前
4秒前
5秒前
李健应助仔仔采纳,获得10
5秒前
共享精神应助冷艳的千亦采纳,获得10
5秒前
gdnm发布了新的文献求助10
5秒前
MANN完成签到 ,获得积分10
6秒前
6秒前
wxxkx发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
xz发布了新的文献求助10
8秒前
眠眠发布了新的文献求助10
8秒前
10秒前
10秒前
10秒前
11秒前
所所应助铯氰的蚁人采纳,获得10
11秒前
JamesPei应助茶米采纳,获得10
11秒前
笑点低诗双完成签到,获得积分20
12秒前
量子星尘发布了新的文献求助10
12秒前
xphpyy发布了新的文献求助10
12秒前
13秒前
13秒前
兴奋千秋发布了新的文献求助10
14秒前
小八儿发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435996
求助须知:如何正确求助?哪些是违规求助? 4548159
关于积分的说明 14212315
捐赠科研通 4468327
什么是DOI,文献DOI怎么找? 2448984
邀请新用户注册赠送积分活动 1439942
关于科研通互助平台的介绍 1416543