已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatial-temporal constraints for surface soil moisture mapping using Sentinel-1 and Sentinel-2 data over agricultural regions

环境科学 遥感 含水量 合成孔径雷达 空间分析 地理 地质学 岩土工程
作者
Yanan Zhou,WANG Binyao,Weiwei Zhu,Li Feng,HE Qi-sheng,Xin Zhang,Tianjun Wu,Nana Yan
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108835-108835 被引量:5
标识
DOI:10.1016/j.compag.2024.108835
摘要

Surface soil moisture (SSM) information could have important applications in agricultural and regional water management. Remote sensing, particularly synthetic aperture radar (SAR), is an important technology for the estimation of spatial–temporal SSM over larger areas. Using Sentinel-1 and Sentinel-2 data, this research developed a general spatial–temporal constrained machine-learning-based method for surface soil moisture mapping over agricultural regions. Central to this method is the construction of spatial and temporal constraints and their implementation in machine-learning models. We first defined the spatial and temporal constraints for SSM estimation by investigating the spatial division of cultivated crop types and the temporal division of cumulative precipitation. Second, under the presumption that the SSM and associated variables are smoothly changing, we extracted the temporal difference variables from the multi-temporal remote sensing data. Finally, we incorporated two constraints as categorical features and temporal differences into a CatBoost-based model to improve surface soil moisture mapping. We verified the proposed model in a Spain study area with multi-temporal remote sensing observations. The experimental results after incorporating the spatial–temporal constraints demonstrate the efficacy of the proposed model for mapping surface soil moisture over agricultural regions, with significantly improved R2 = 0.7328, RMSE = 0.0451 vol, and MAE = 0.0351 vol This study also concluded that using multiple polarization in the machine-learning-based method could reliably and accurately estimate surface soil moisture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuwenjie发布了新的文献求助10
1秒前
tomorrow完成签到 ,获得积分10
2秒前
3秒前
3秒前
英俊的铭应助朱柏松采纳,获得10
4秒前
4秒前
迷路凌柏完成签到 ,获得积分10
5秒前
黎明森发布了新的文献求助10
6秒前
7秒前
wsx发布了新的文献求助10
8秒前
大个应助陈1采纳,获得10
9秒前
丘比特应助xxf采纳,获得10
9秒前
星魂发布了新的文献求助10
9秒前
10秒前
11秒前
NLJY完成签到,获得积分10
13秒前
15秒前
yuan给yuan的求助进行了留言
15秒前
16秒前
朱诗佳发布了新的文献求助10
17秒前
17秒前
19秒前
lilili发布了新的文献求助10
20秒前
飞逝的快乐时光完成签到 ,获得积分10
21秒前
文丽完成签到,获得积分10
21秒前
帅气的安柏应助Sssun17采纳,获得30
24秒前
25秒前
恋恋不舍得完成签到,获得积分10
25秒前
陶醉巧凡完成签到,获得积分10
26秒前
Ava应助朴素曼岚采纳,获得10
26秒前
赫如冰完成签到 ,获得积分10
27秒前
27秒前
ZJX应助卡卡罗特采纳,获得10
28秒前
完美世界应助文丽采纳,获得30
30秒前
32秒前
浮游应助科研通管家采纳,获得10
33秒前
慕青应助科研通管家采纳,获得30
33秒前
CodeCraft应助科研通管家采纳,获得10
33秒前
33秒前
浮游应助科研通管家采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434