Spatial-temporal constraints for surface soil moisture mapping using Sentinel-1 and Sentinel-2 data over agricultural regions

环境科学 遥感 含水量 合成孔径雷达 空间分析 地理 地质学 岩土工程
作者
Yanan Zhou,WANG Binyao,Weiwei Zhu,Li Feng,HE Qi-sheng,Xin Zhang,Tianjun Wu,Nana Yan
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108835-108835 被引量:5
标识
DOI:10.1016/j.compag.2024.108835
摘要

Surface soil moisture (SSM) information could have important applications in agricultural and regional water management. Remote sensing, particularly synthetic aperture radar (SAR), is an important technology for the estimation of spatial–temporal SSM over larger areas. Using Sentinel-1 and Sentinel-2 data, this research developed a general spatial–temporal constrained machine-learning-based method for surface soil moisture mapping over agricultural regions. Central to this method is the construction of spatial and temporal constraints and their implementation in machine-learning models. We first defined the spatial and temporal constraints for SSM estimation by investigating the spatial division of cultivated crop types and the temporal division of cumulative precipitation. Second, under the presumption that the SSM and associated variables are smoothly changing, we extracted the temporal difference variables from the multi-temporal remote sensing data. Finally, we incorporated two constraints as categorical features and temporal differences into a CatBoost-based model to improve surface soil moisture mapping. We verified the proposed model in a Spain study area with multi-temporal remote sensing observations. The experimental results after incorporating the spatial–temporal constraints demonstrate the efficacy of the proposed model for mapping surface soil moisture over agricultural regions, with significantly improved R2 = 0.7328, RMSE = 0.0451 vol, and MAE = 0.0351 vol This study also concluded that using multiple polarization in the machine-learning-based method could reliably and accurately estimate surface soil moisture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
agnes发布了新的文献求助10
刚刚
Ovo关注了科研通微信公众号
刚刚
lessormoto发布了新的文献求助10
1秒前
Owen应助一天采纳,获得10
1秒前
赵丽红完成签到 ,获得积分10
1秒前
雪白梦容发布了新的文献求助10
2秒前
彭于晏应助冷静的无血采纳,获得10
2秒前
P16发布了新的文献求助10
2秒前
3秒前
yyy发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
Yin完成签到,获得积分10
4秒前
cxp完成签到,获得积分10
4秒前
Cx330发布了新的文献求助10
4秒前
4秒前
yeyeye完成签到 ,获得积分10
4秒前
汉堡包应助痴情的雁易采纳,获得10
5秒前
5秒前
6秒前
HY完成签到,获得积分10
6秒前
Clovis33完成签到 ,获得积分10
6秒前
虚幻诗柳应助啊啊啊啊采纳,获得10
7秒前
Li完成签到,获得积分10
7秒前
星星你个星星完成签到,获得积分10
7秒前
wei完成签到,获得积分10
7秒前
7秒前
7秒前
小一发布了新的文献求助10
8秒前
星河之外spectator完成签到,获得积分0
8秒前
8秒前
Tripod应助ivying0209采纳,获得10
8秒前
8秒前
8秒前
郑亚铎完成签到,获得积分10
9秒前
口袋小镇发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5013461
求助须知:如何正确求助?哪些是违规求助? 4254548
关于积分的说明 13258498
捐赠科研通 4057614
什么是DOI,文献DOI怎么找? 2219343
邀请新用户注册赠送积分活动 1228859
关于科研通互助平台的介绍 1151416