Spatial-temporal constraints for surface soil moisture mapping using Sentinel-1 and Sentinel-2 data over agricultural regions

环境科学 遥感 含水量 合成孔径雷达 空间分析 地理 地质学 岩土工程
作者
Yanan Zhou,WANG Binyao,Weiwei Zhu,Li Feng,HE Qi-sheng,Xin Zhang,Tianjun Wu,Nana Yan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108835-108835 被引量:5
标识
DOI:10.1016/j.compag.2024.108835
摘要

Surface soil moisture (SSM) information could have important applications in agricultural and regional water management. Remote sensing, particularly synthetic aperture radar (SAR), is an important technology for the estimation of spatial–temporal SSM over larger areas. Using Sentinel-1 and Sentinel-2 data, this research developed a general spatial–temporal constrained machine-learning-based method for surface soil moisture mapping over agricultural regions. Central to this method is the construction of spatial and temporal constraints and their implementation in machine-learning models. We first defined the spatial and temporal constraints for SSM estimation by investigating the spatial division of cultivated crop types and the temporal division of cumulative precipitation. Second, under the presumption that the SSM and associated variables are smoothly changing, we extracted the temporal difference variables from the multi-temporal remote sensing data. Finally, we incorporated two constraints as categorical features and temporal differences into a CatBoost-based model to improve surface soil moisture mapping. We verified the proposed model in a Spain study area with multi-temporal remote sensing observations. The experimental results after incorporating the spatial–temporal constraints demonstrate the efficacy of the proposed model for mapping surface soil moisture over agricultural regions, with significantly improved R2 = 0.7328, RMSE = 0.0451 vol, and MAE = 0.0351 vol This study also concluded that using multiple polarization in the machine-learning-based method could reliably and accurately estimate surface soil moisture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
szy完成签到,获得积分10
1秒前
起司猫发布了新的文献求助10
1秒前
思源应助勤奋的梦桃采纳,获得10
2秒前
CipherSage应助lily采纳,获得10
3秒前
丽优完成签到,获得积分10
3秒前
Doki完成签到 ,获得积分20
4秒前
香蕉觅云应助mmyhn采纳,获得10
4秒前
大个应助钰钰yuyu采纳,获得10
5秒前
时长两年半完成签到,获得积分10
5秒前
8秒前
痴情的思烟完成签到 ,获得积分10
8秒前
9秒前
胖莹完成签到 ,获得积分10
9秒前
ABC完成签到,获得积分10
11秒前
11秒前
袁晨阳完成签到 ,获得积分10
11秒前
yyds给张景赛的求助进行了留言
11秒前
w1完成签到,获得积分10
12秒前
12秒前
浮游应助XI采纳,获得10
13秒前
13秒前
LYYYY完成签到,获得积分10
13秒前
14秒前
痴情的思烟关注了科研通微信公众号
14秒前
十七。完成签到,获得积分10
15秒前
一口啵啵发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
无辜问玉完成签到,获得积分10
17秒前
ABC发布了新的文献求助10
17秒前
wlei发布了新的文献求助10
17秒前
华仔应助好玩和有趣采纳,获得10
19秒前
LYYYY发布了新的文献求助10
19秒前
20秒前
21秒前
无辜问玉发布了新的文献求助10
21秒前
22秒前
流云发布了新的文献求助10
23秒前
研友_Zlqx38发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288471
求助须知:如何正确求助?哪些是违规求助? 4440345
关于积分的说明 13824326
捐赠科研通 4322585
什么是DOI,文献DOI怎么找? 2372663
邀请新用户注册赠送积分活动 1368105
关于科研通互助平台的介绍 1331949