Spatial-temporal constraints for surface soil moisture mapping using Sentinel-1 and Sentinel-2 data over agricultural regions

环境科学 遥感 含水量 合成孔径雷达 空间分析 地理 地质学 岩土工程
作者
Yanan Zhou,WANG Binyao,Weiwei Zhu,Li Feng,HE Qi-sheng,Xin Zhang,Tianjun Wu,Nana Yan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108835-108835 被引量:5
标识
DOI:10.1016/j.compag.2024.108835
摘要

Surface soil moisture (SSM) information could have important applications in agricultural and regional water management. Remote sensing, particularly synthetic aperture radar (SAR), is an important technology for the estimation of spatial–temporal SSM over larger areas. Using Sentinel-1 and Sentinel-2 data, this research developed a general spatial–temporal constrained machine-learning-based method for surface soil moisture mapping over agricultural regions. Central to this method is the construction of spatial and temporal constraints and their implementation in machine-learning models. We first defined the spatial and temporal constraints for SSM estimation by investigating the spatial division of cultivated crop types and the temporal division of cumulative precipitation. Second, under the presumption that the SSM and associated variables are smoothly changing, we extracted the temporal difference variables from the multi-temporal remote sensing data. Finally, we incorporated two constraints as categorical features and temporal differences into a CatBoost-based model to improve surface soil moisture mapping. We verified the proposed model in a Spain study area with multi-temporal remote sensing observations. The experimental results after incorporating the spatial–temporal constraints demonstrate the efficacy of the proposed model for mapping surface soil moisture over agricultural regions, with significantly improved R2 = 0.7328, RMSE = 0.0451 vol, and MAE = 0.0351 vol This study also concluded that using multiple polarization in the machine-learning-based method could reliably and accurately estimate surface soil moisture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长情的语风完成签到 ,获得积分10
1秒前
1秒前
小马同学完成签到,获得积分10
2秒前
鲫鱼发布了新的文献求助10
2秒前
ldy完成签到 ,获得积分10
3秒前
DrW完成签到,获得积分0
4秒前
明眸发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
梁云完成签到,获得积分10
6秒前
乐乐应助Phe采纳,获得10
6秒前
Ava应助小学霸搞科研采纳,获得10
6秒前
limi完成签到 ,获得积分10
6秒前
7秒前
刘志萍完成签到 ,获得积分10
8秒前
11秒前
11秒前
mango完成签到,获得积分10
11秒前
like1994发布了新的文献求助10
13秒前
香蕉觅云应助cc采纳,获得10
13秒前
Phe完成签到,获得积分10
15秒前
16秒前
留胡子的霖完成签到,获得积分10
17秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
Mia完成签到,获得积分10
20秒前
宋宋宋2完成签到,获得积分10
20秒前
顾矜应助keeptg采纳,获得10
20秒前
c14在读文献完成签到,获得积分10
20秒前
7907完成签到,获得积分10
20秒前
21秒前
haha完成签到 ,获得积分10
21秒前
高脚菜发布了新的文献求助10
21秒前
哈哈完成签到,获得积分10
21秒前
21秒前
魔幻笑容发布了新的文献求助10
22秒前
今昔发布了新的文献求助10
22秒前
付小源完成签到,获得积分10
23秒前
肥猫完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419574
求助须知:如何正确求助?哪些是违规求助? 4534806
关于积分的说明 14147001
捐赠科研通 4451480
什么是DOI,文献DOI怎么找? 2441759
邀请新用户注册赠送积分活动 1433376
关于科研通互助平台的介绍 1410616