Spatial-temporal constraints for surface soil moisture mapping using Sentinel-1 and Sentinel-2 data over agricultural regions

环境科学 遥感 含水量 合成孔径雷达 空间分析 地理 地质学 岩土工程
作者
Yanan Zhou,WANG Binyao,Weiwei Zhu,Li Feng,HE Qi-sheng,Xin Zhang,Tianjun Wu,Nana Yan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108835-108835 被引量:5
标识
DOI:10.1016/j.compag.2024.108835
摘要

Surface soil moisture (SSM) information could have important applications in agricultural and regional water management. Remote sensing, particularly synthetic aperture radar (SAR), is an important technology for the estimation of spatial–temporal SSM over larger areas. Using Sentinel-1 and Sentinel-2 data, this research developed a general spatial–temporal constrained machine-learning-based method for surface soil moisture mapping over agricultural regions. Central to this method is the construction of spatial and temporal constraints and their implementation in machine-learning models. We first defined the spatial and temporal constraints for SSM estimation by investigating the spatial division of cultivated crop types and the temporal division of cumulative precipitation. Second, under the presumption that the SSM and associated variables are smoothly changing, we extracted the temporal difference variables from the multi-temporal remote sensing data. Finally, we incorporated two constraints as categorical features and temporal differences into a CatBoost-based model to improve surface soil moisture mapping. We verified the proposed model in a Spain study area with multi-temporal remote sensing observations. The experimental results after incorporating the spatial–temporal constraints demonstrate the efficacy of the proposed model for mapping surface soil moisture over agricultural regions, with significantly improved R2 = 0.7328, RMSE = 0.0451 vol, and MAE = 0.0351 vol This study also concluded that using multiple polarization in the machine-learning-based method could reliably and accurately estimate surface soil moisture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
sevenhill应助Jack采纳,获得10
1秒前
2秒前
2秒前
yao发布了新的文献求助10
3秒前
3秒前
顾矜应助小白采纳,获得10
3秒前
祖国统一发布了新的文献求助10
3秒前
4秒前
香蕉觅云应助欣慰的从梦采纳,获得10
5秒前
5秒前
才染完成签到 ,获得积分10
5秒前
5秒前
琪凯定理完成签到,获得积分10
5秒前
宋文静完成签到,获得积分10
7秒前
小杭76应助安详的甜瓜采纳,获得10
7秒前
周震洋发布了新的文献求助10
7秒前
小杭76应助安详的甜瓜采纳,获得10
7秒前
Jasper应助安详的甜瓜采纳,获得10
7秒前
twbsci发布了新的文献求助10
7秒前
领导范儿应助FleurdelisDZhang采纳,获得10
8秒前
fufu6发布了新的文献求助10
8秒前
豆包发布了新的文献求助10
9秒前
无限水杯完成签到,获得积分10
10秒前
斑驳发布了新的文献求助10
11秒前
丘比特应助JayZee采纳,获得10
12秒前
wang完成签到,获得积分20
13秒前
bkagyin应助τ涛采纳,获得10
13秒前
小猫星星眼完成签到,获得积分10
13秒前
13秒前
豆包完成签到,获得积分10
14秒前
15秒前
疲惫窝窝头完成签到,获得积分10
15秒前
16秒前
TiAspetto完成签到,获得积分10
17秒前
体贴的白羊完成签到,获得积分10
17秒前
充电宝应助周震洋采纳,获得10
17秒前
喜悦荧发布了新的文献求助10
17秒前
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442411
求助须知:如何正确求助?哪些是违规求助? 4552693
关于积分的说明 14237826
捐赠科研通 4473934
什么是DOI,文献DOI怎么找? 2451764
邀请新用户注册赠送积分活动 1442609
关于科研通互助平台的介绍 1418551