Spatial-temporal constraints for surface soil moisture mapping using Sentinel-1 and Sentinel-2 data over agricultural regions

环境科学 遥感 含水量 合成孔径雷达 空间分析 地理 地质学 岩土工程
作者
Yanan Zhou,WANG Binyao,Weiwei Zhu,Li Feng,HE Qi-sheng,Xin Zhang,Tianjun Wu,Nana Yan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108835-108835 被引量:5
标识
DOI:10.1016/j.compag.2024.108835
摘要

Surface soil moisture (SSM) information could have important applications in agricultural and regional water management. Remote sensing, particularly synthetic aperture radar (SAR), is an important technology for the estimation of spatial–temporal SSM over larger areas. Using Sentinel-1 and Sentinel-2 data, this research developed a general spatial–temporal constrained machine-learning-based method for surface soil moisture mapping over agricultural regions. Central to this method is the construction of spatial and temporal constraints and their implementation in machine-learning models. We first defined the spatial and temporal constraints for SSM estimation by investigating the spatial division of cultivated crop types and the temporal division of cumulative precipitation. Second, under the presumption that the SSM and associated variables are smoothly changing, we extracted the temporal difference variables from the multi-temporal remote sensing data. Finally, we incorporated two constraints as categorical features and temporal differences into a CatBoost-based model to improve surface soil moisture mapping. We verified the proposed model in a Spain study area with multi-temporal remote sensing observations. The experimental results after incorporating the spatial–temporal constraints demonstrate the efficacy of the proposed model for mapping surface soil moisture over agricultural regions, with significantly improved R2 = 0.7328, RMSE = 0.0451 vol, and MAE = 0.0351 vol This study also concluded that using multiple polarization in the machine-learning-based method could reliably and accurately estimate surface soil moisture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
竹本完成签到 ,获得积分10
刚刚
Vanness发布了新的文献求助10
刚刚
pancake发布了新的文献求助30
1秒前
2秒前
2秒前
3秒前
浮游应助ZZZ采纳,获得10
3秒前
6秒前
6秒前
赘婿应助王小帅ok采纳,获得10
7秒前
久伴久爱完成签到 ,获得积分10
7秒前
林晨则静完成签到 ,获得积分10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
mingmingjiu发布了新的文献求助10
9秒前
张艺馨发布了新的文献求助10
9秒前
赵寒迟完成签到 ,获得积分10
9秒前
cwz发布了新的文献求助10
9秒前
体贴的老太完成签到,获得积分20
9秒前
孟龙威发布了新的文献求助10
10秒前
完美世界应助无奈敏采纳,获得10
10秒前
小陈完成签到,获得积分10
11秒前
彭于晏应助残幻采纳,获得10
11秒前
123应助无敌小b采纳,获得10
12秒前
FashionBoy应助啤酒半斤采纳,获得10
12秒前
12秒前
哭泣的宛丝完成签到,获得积分10
13秒前
biu发布了新的文献求助10
13秒前
鱼猫完成签到,获得积分20
13秒前
14秒前
chenhy完成签到,获得积分10
14秒前
帅气的Bond完成签到,获得积分10
15秒前
aa发布了新的文献求助10
16秒前
小青椒应助cwz采纳,获得30
16秒前
17秒前
17秒前
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337