已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatial-temporal constraints for surface soil moisture mapping using Sentinel-1 and Sentinel-2 data over agricultural regions

环境科学 遥感 含水量 合成孔径雷达 空间分析 地理 地质学 岩土工程
作者
Yanan Zhou,WANG Binyao,Weiwei Zhu,Li Feng,HE Qi-sheng,Xin Zhang,Tianjun Wu,Nana Yan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108835-108835 被引量:5
标识
DOI:10.1016/j.compag.2024.108835
摘要

Surface soil moisture (SSM) information could have important applications in agricultural and regional water management. Remote sensing, particularly synthetic aperture radar (SAR), is an important technology for the estimation of spatial–temporal SSM over larger areas. Using Sentinel-1 and Sentinel-2 data, this research developed a general spatial–temporal constrained machine-learning-based method for surface soil moisture mapping over agricultural regions. Central to this method is the construction of spatial and temporal constraints and their implementation in machine-learning models. We first defined the spatial and temporal constraints for SSM estimation by investigating the spatial division of cultivated crop types and the temporal division of cumulative precipitation. Second, under the presumption that the SSM and associated variables are smoothly changing, we extracted the temporal difference variables from the multi-temporal remote sensing data. Finally, we incorporated two constraints as categorical features and temporal differences into a CatBoost-based model to improve surface soil moisture mapping. We verified the proposed model in a Spain study area with multi-temporal remote sensing observations. The experimental results after incorporating the spatial–temporal constraints demonstrate the efficacy of the proposed model for mapping surface soil moisture over agricultural regions, with significantly improved R2 = 0.7328, RMSE = 0.0451 vol, and MAE = 0.0351 vol This study also concluded that using multiple polarization in the machine-learning-based method could reliably and accurately estimate surface soil moisture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
woshizy完成签到,获得积分10
刚刚
aslink完成签到,获得积分10
1秒前
无私的冰双完成签到,获得积分10
1秒前
cindy完成签到,获得积分10
1秒前
传奇3应助刘壮实采纳,获得10
1秒前
vicky完成签到,获得积分10
3秒前
CC_Galaxy完成签到 ,获得积分10
3秒前
4秒前
Jason完成签到,获得积分20
5秒前
5秒前
bkagyin应助zz采纳,获得10
5秒前
6秒前
lina完成签到 ,获得积分10
7秒前
zzzzzz完成签到,获得积分10
8秒前
天天快乐应助潇潇鱼采纳,获得10
10秒前
10秒前
小药丸发布了新的文献求助10
10秒前
哇塞完成签到 ,获得积分10
12秒前
13秒前
妘婴完成签到,获得积分10
15秒前
15秒前
15秒前
暗月完成签到,获得积分10
16秒前
贾贾完成签到 ,获得积分10
17秒前
城。完成签到,获得积分10
18秒前
yohana完成签到 ,获得积分10
19秒前
19秒前
十一完成签到 ,获得积分10
20秒前
高晗发布了新的文献求助10
20秒前
zz发布了新的文献求助10
20秒前
刘壮实发布了新的文献求助10
20秒前
meow完成签到 ,获得积分10
21秒前
李明完成签到 ,获得积分10
22秒前
龙骑士25完成签到 ,获得积分10
22秒前
cc完成签到,获得积分10
23秒前
24秒前
25秒前
缓慢弼发布了新的文献求助10
26秒前
伊戈达拉一个大拉完成签到 ,获得积分10
26秒前
m李完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401142
求助须知:如何正确求助?哪些是违规求助? 4520145
关于积分的说明 14078789
捐赠科研通 4433229
什么是DOI,文献DOI怎么找? 2434030
邀请新用户注册赠送积分活动 1426180
关于科研通互助平台的介绍 1404792