Spatial-temporal constraints for surface soil moisture mapping using Sentinel-1 and Sentinel-2 data over agricultural regions

环境科学 遥感 含水量 合成孔径雷达 空间分析 地理 地质学 岩土工程
作者
Yanan Zhou,WANG Binyao,Weiwei Zhu,Li Feng,HE Qi-sheng,Xin Zhang,Tianjun Wu,Nana Yan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108835-108835 被引量:5
标识
DOI:10.1016/j.compag.2024.108835
摘要

Surface soil moisture (SSM) information could have important applications in agricultural and regional water management. Remote sensing, particularly synthetic aperture radar (SAR), is an important technology for the estimation of spatial–temporal SSM over larger areas. Using Sentinel-1 and Sentinel-2 data, this research developed a general spatial–temporal constrained machine-learning-based method for surface soil moisture mapping over agricultural regions. Central to this method is the construction of spatial and temporal constraints and their implementation in machine-learning models. We first defined the spatial and temporal constraints for SSM estimation by investigating the spatial division of cultivated crop types and the temporal division of cumulative precipitation. Second, under the presumption that the SSM and associated variables are smoothly changing, we extracted the temporal difference variables from the multi-temporal remote sensing data. Finally, we incorporated two constraints as categorical features and temporal differences into a CatBoost-based model to improve surface soil moisture mapping. We verified the proposed model in a Spain study area with multi-temporal remote sensing observations. The experimental results after incorporating the spatial–temporal constraints demonstrate the efficacy of the proposed model for mapping surface soil moisture over agricultural regions, with significantly improved R2 = 0.7328, RMSE = 0.0451 vol, and MAE = 0.0351 vol This study also concluded that using multiple polarization in the machine-learning-based method could reliably and accurately estimate surface soil moisture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
识时务这也完成签到,获得积分10
1秒前
Agan发布了新的文献求助10
4秒前
CNYDNZB发布了新的文献求助10
5秒前
残剑月完成签到,获得积分10
6秒前
希望天下0贩的0应助黄臻采纳,获得10
7秒前
小曹努力完成签到,获得积分10
7秒前
8秒前
科研民工完成签到,获得积分10
10秒前
乐乐应助ronnie采纳,获得10
11秒前
松鼠非鼠完成签到 ,获得积分10
11秒前
11秒前
12秒前
含糊的二娘完成签到,获得积分10
12秒前
斯文败类应助小唐要加油采纳,获得10
13秒前
大气萤应助泺泺采纳,获得10
13秒前
gaijiaofanv发布了新的文献求助10
18秒前
那兰完成签到,获得积分20
18秒前
江竹兰发布了新的文献求助10
19秒前
20秒前
21秒前
acceptddd完成签到,获得积分10
22秒前
打打应助moumou采纳,获得10
23秒前
Menisoda关注了科研通微信公众号
23秒前
sansan完成签到,获得积分10
23秒前
吴咪完成签到,获得积分10
24秒前
aganer完成签到,获得积分10
24秒前
Jasper应助微甜神仙水采纳,获得10
25秒前
张雪芹发布了新的文献求助10
27秒前
aganer发布了新的文献求助10
28秒前
28秒前
科研通AI6应助祈雨的鲸鱼采纳,获得10
29秒前
34秒前
36秒前
坚强水杯发布了新的文献求助10
37秒前
tanhaowen发布了新的文献求助10
37秒前
CodeCraft应助江竹兰采纳,获得10
38秒前
39秒前
LongY发布了新的文献求助20
41秒前
Refuel完成签到,获得积分10
42秒前
zw发布了新的文献求助30
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560719
求助须知:如何正确求助?哪些是违规求助? 4646051
关于积分的说明 14677115
捐赠科研通 4587167
什么是DOI,文献DOI怎么找? 2516853
邀请新用户注册赠送积分活动 1490320
关于科研通互助平台的介绍 1461136