已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Catenary Insulator Defect Detection: A Dataset and an Unsupervised Baseline

基线(sea) 悬链线 计算机科学 人工智能 工程类 地质学 结构工程 海洋学
作者
T.X. Zhang,Sheng Zhong,Wenhui Xu,Luxin Yan,Xu Zou
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15 被引量:1
标识
DOI:10.1109/tim.2024.3390695
摘要

The high-speed railway, powered by the catenary, serves as a high-capacity and high-frequency transportation means due to its convenience. Insulators are integral components of the catenary. Once defects appear in insulators, they pose a risk of serious traffic accidents. Automatic detection of insulator defects proves to be an effective way to avoid further breakdowns and ensure the safety of the high-speed railway. To this end, many deep learning-based approaches have been developed. Though high performances have been achieved, they heavily rely on a large amount of high-quality annotated samples. Nevertheless, in practical scenarios, defect samples are difficult to collect. Moreover, annotating these samples is both labor-intensive and expert-requiring. Additionally, to the best of our knowledge, there is currently no publicly available dataset specifically dedicated to insulator defect detection. To address the issue of data scarcity, in this work, we first collect catenary insulator images captured by the high-speed rail inspection device on real railway lines and construct the Catenary Insulator Defect (CID) dataset. To break the dilemma of the lack of defect data and high-quality annotations, we further propose a simple but effective insulator defect detection framework in an unsupervised image reconstruction manner. Extensive experiments demonstrate that our proposed method demonstrates high accuracy in detecting various insulator defects without the need for manual annotations. The CID dataset and source codes have been made publicly available at https://github.com/LightZH/Insulator-Defect-Detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
neozeon发布了新的文献求助10
1秒前
星辰大海应助小美女采纳,获得20
2秒前
哭泣嵩发布了新的文献求助10
2秒前
言余完成签到,获得积分10
5秒前
郝飞飞应助mmyhn采纳,获得10
7秒前
科研通AI5应助SSS采纳,获得10
8秒前
所所应助哭泣嵩采纳,获得10
9秒前
共享精神应助永曼采纳,获得10
10秒前
所所应助潇洒的语蝶采纳,获得10
12秒前
13秒前
16秒前
万能图书馆应助SSS采纳,获得10
16秒前
鱼鱼发布了新的文献求助10
20秒前
22秒前
往返自然完成签到,获得积分10
23秒前
23秒前
25秒前
Orange应助科研通管家采纳,获得10
29秒前
传奇3应助科研通管家采纳,获得10
29秒前
小马甲应助科研通管家采纳,获得10
29秒前
顾矜应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
情怀应助科研通管家采纳,获得30
29秒前
李健的粉丝团团长应助SSS采纳,获得10
29秒前
天天快乐应助科研通管家采纳,获得10
29秒前
活力的采枫完成签到 ,获得积分10
29秒前
Jasper应助科研通管家采纳,获得10
29秒前
英姑应助科研通管家采纳,获得10
30秒前
30秒前
zuofighting发布了新的文献求助10
32秒前
海贼学术完成签到 ,获得积分10
37秒前
秋叶发布了新的文献求助10
37秒前
40秒前
七慕凉应助耍酷热狗采纳,获得10
42秒前
优美的飞柏完成签到 ,获得积分10
43秒前
孤独的雄鹰完成签到,获得积分10
45秒前
赘婿应助SSS采纳,获得10
45秒前
45秒前
taotao发布了新的文献求助10
46秒前
伴夏发布了新的文献求助10
52秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736561
求助须知:如何正确求助?哪些是违规求助? 3280413
关于积分的说明 10019733
捐赠科研通 2997094
什么是DOI,文献DOI怎么找? 1644407
邀请新用户注册赠送积分活动 781973
科研通“疑难数据库(出版商)”最低求助积分说明 749641