Improved Double Deep Q-Network Algorithm Applied to Multi-Dimensional Environment Path Planning of Hexapod Robots

导线 六足动物 运动规划 计算机科学 机器人 算法 粒子群优化 适应性 趋同(经济学) 路径(计算) 人工神经网络 数学优化 模拟 人工智能 数学 生物 经济增长 经济 程序设计语言 地理 生态学 大地测量学
作者
Liuhongxu Chen,Qibiao Wang,Chao Deng,Bo Xie,Xianguo Tuo,Jiang Gang
出处
期刊:Sensors [MDPI AG]
卷期号:24 (7): 2061-2061 被引量:2
标识
DOI:10.3390/s24072061
摘要

Detecting transportation pipeline leakage points within chemical plants is difficult due to complex pathways, multi-dimensional survey points, and highly dynamic scenarios. However, hexapod robots’ maneuverability and adaptability make it an ideal candidate for conducting surveys across different planes. The path-planning problem of hexapod robots in multi-dimensional environments is a significant challenge, especially when identifying suitable transition points and planning shorter paths to reach survey points while traversing multi-level environments. This study proposes a Particle Swarm Optimization (PSO)-guided Double Deep Q-Network (DDQN) approach, namely, the PSO-guided DDQN (PG-DDQN) algorithm, for solving this problem. The proposed algorithm incorporates the PSO algorithm to supplant the traditional random selection strategy, and the data obtained from this guided approach are subsequently employed to train the DDQN neural network. The multi-dimensional random environment is abstracted into localized maps comprising current and next level planes. Comparative experiments were performed with PG-DDQN, standard DQN, and standard DDQN to evaluate the algorithm’s performance by using multiple randomly generated localized maps. After testing each iteration, each algorithm obtained the total reward values and completion times. The results demonstrate that PG-DDQN exhibited faster convergence under an equivalent iteration count. Compared with standard DQN and standard DDQN, reductions in path-planning time of at least 33.94% and 42.60%, respectively, were observed, significantly improving the robot’s mobility. Finally, the PG-DDQN algorithm was integrated with sensors onto a hexapod robot, and validation was performed through Gazebo simulations and Experiment. The results show that controlling hexapod robots by applying PG-DDQN provides valuable insights for path planning to reach transportation pipeline leakage points within chemical plants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
kevindm发布了新的文献求助10
3秒前
4秒前
左安完成签到,获得积分10
4秒前
5秒前
知性的囧完成签到,获得积分10
5秒前
5秒前
abc123发布了新的文献求助10
5秒前
讨厌所有人完成签到,获得积分10
5秒前
6秒前
psj完成签到,获得积分10
6秒前
852应助枫溪采纳,获得10
6秒前
7秒前
8秒前
shadow完成签到 ,获得积分10
10秒前
万能图书馆应助小刺猬采纳,获得30
10秒前
滴答发布了新的文献求助30
10秒前
10秒前
10秒前
沅期发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
俭朴奇异果完成签到,获得积分10
13秒前
橙鹿鹿的猫完成签到,获得积分10
13秒前
13秒前
边港洋发布了新的文献求助10
15秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
18秒前
笨男孩发布了新的文献求助10
18秒前
19秒前
19秒前
wanghao发布了新的文献求助10
19秒前
陈湫完成签到,获得积分10
20秒前
田様应助等待的寒松采纳,获得10
20秒前
害怕的白竹完成签到,获得积分10
21秒前
随心完成签到,获得积分10
21秒前
怕孤单的嚣完成签到,获得积分20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425