Improved Double Deep Q-Network Algorithm Applied to Multi-Dimensional Environment Path Planning of Hexapod Robots

导线 六足动物 运动规划 计算机科学 机器人 算法 粒子群优化 适应性 趋同(经济学) 路径(计算) 人工神经网络 数学优化 模拟 人工智能 数学 生态学 大地测量学 经济增长 经济 生物 程序设计语言 地理
作者
Liuhongxu Chen,Qibiao Wang,Chao Deng,Bo Xie,Xianguo Tuo,Jiang Gang
出处
期刊:Sensors [MDPI AG]
卷期号:24 (7): 2061-2061 被引量:2
标识
DOI:10.3390/s24072061
摘要

Detecting transportation pipeline leakage points within chemical plants is difficult due to complex pathways, multi-dimensional survey points, and highly dynamic scenarios. However, hexapod robots’ maneuverability and adaptability make it an ideal candidate for conducting surveys across different planes. The path-planning problem of hexapod robots in multi-dimensional environments is a significant challenge, especially when identifying suitable transition points and planning shorter paths to reach survey points while traversing multi-level environments. This study proposes a Particle Swarm Optimization (PSO)-guided Double Deep Q-Network (DDQN) approach, namely, the PSO-guided DDQN (PG-DDQN) algorithm, for solving this problem. The proposed algorithm incorporates the PSO algorithm to supplant the traditional random selection strategy, and the data obtained from this guided approach are subsequently employed to train the DDQN neural network. The multi-dimensional random environment is abstracted into localized maps comprising current and next level planes. Comparative experiments were performed with PG-DDQN, standard DQN, and standard DDQN to evaluate the algorithm’s performance by using multiple randomly generated localized maps. After testing each iteration, each algorithm obtained the total reward values and completion times. The results demonstrate that PG-DDQN exhibited faster convergence under an equivalent iteration count. Compared with standard DQN and standard DDQN, reductions in path-planning time of at least 33.94% and 42.60%, respectively, were observed, significantly improving the robot’s mobility. Finally, the PG-DDQN algorithm was integrated with sensors onto a hexapod robot, and validation was performed through Gazebo simulations and Experiment. The results show that controlling hexapod robots by applying PG-DDQN provides valuable insights for path planning to reach transportation pipeline leakage points within chemical plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
三金完成签到,获得积分10
刚刚
刚刚
ZZ0901完成签到,获得积分10
刚刚
1秒前
Hannah发布了新的文献求助40
1秒前
看山不是山完成签到,获得积分10
1秒前
1秒前
hjf发布了新的文献求助20
1秒前
2秒前
反方向的枫完成签到,获得积分10
2秒前
Mole完成签到,获得积分10
2秒前
活泼盼夏完成签到,获得积分10
3秒前
开心初南完成签到,获得积分10
4秒前
村口的帅老头完成签到 ,获得积分10
4秒前
纱夏完成签到,获得积分10
5秒前
5秒前
carrot发布了新的文献求助10
5秒前
有我ID随机吗完成签到,获得积分10
6秒前
典雅的俊驰完成签到,获得积分10
6秒前
left_right完成签到,获得积分10
7秒前
菜菜鱼完成签到,获得积分10
7秒前
跳跃的幻露完成签到,获得积分10
7秒前
cc完成签到,获得积分10
7秒前
Sitong完成签到,获得积分10
8秒前
小小发布了新的文献求助20
8秒前
zzzwwwkkk完成签到,获得积分10
8秒前
乐乐应助贪玩元晴采纳,获得10
9秒前
9秒前
9秒前
Jack完成签到,获得积分10
10秒前
10秒前
三色堇完成签到,获得积分10
10秒前
zy发布了新的文献求助10
10秒前
星空物语完成签到,获得积分10
10秒前
11秒前
11秒前
酷波er应助yatou5651采纳,获得10
12秒前
Czerkingsky完成签到,获得积分10
12秒前
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299039
求助须知:如何正确求助?哪些是违规求助? 2934095
关于积分的说明 8466867
捐赠科研通 2607468
什么是DOI,文献DOI怎么找? 1423751
科研通“疑难数据库(出版商)”最低求助积分说明 661677
邀请新用户注册赠送积分活动 645327