Improved Double Deep Q-Network Algorithm Applied to Multi-Dimensional Environment Path Planning of Hexapod Robots

导线 六足动物 运动规划 计算机科学 机器人 算法 粒子群优化 适应性 趋同(经济学) 路径(计算) 人工神经网络 数学优化 模拟 人工智能 数学 生物 经济增长 经济 程序设计语言 地理 生态学 大地测量学
作者
Liuhongxu Chen,Qibiao Wang,Chao Deng,Bo Xie,Xianguo Tuo,Jiang Gang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (7): 2061-2061 被引量:2
标识
DOI:10.3390/s24072061
摘要

Detecting transportation pipeline leakage points within chemical plants is difficult due to complex pathways, multi-dimensional survey points, and highly dynamic scenarios. However, hexapod robots’ maneuverability and adaptability make it an ideal candidate for conducting surveys across different planes. The path-planning problem of hexapod robots in multi-dimensional environments is a significant challenge, especially when identifying suitable transition points and planning shorter paths to reach survey points while traversing multi-level environments. This study proposes a Particle Swarm Optimization (PSO)-guided Double Deep Q-Network (DDQN) approach, namely, the PSO-guided DDQN (PG-DDQN) algorithm, for solving this problem. The proposed algorithm incorporates the PSO algorithm to supplant the traditional random selection strategy, and the data obtained from this guided approach are subsequently employed to train the DDQN neural network. The multi-dimensional random environment is abstracted into localized maps comprising current and next level planes. Comparative experiments were performed with PG-DDQN, standard DQN, and standard DDQN to evaluate the algorithm’s performance by using multiple randomly generated localized maps. After testing each iteration, each algorithm obtained the total reward values and completion times. The results demonstrate that PG-DDQN exhibited faster convergence under an equivalent iteration count. Compared with standard DQN and standard DDQN, reductions in path-planning time of at least 33.94% and 42.60%, respectively, were observed, significantly improving the robot’s mobility. Finally, the PG-DDQN algorithm was integrated with sensors onto a hexapod robot, and validation was performed through Gazebo simulations and Experiment. The results show that controlling hexapod robots by applying PG-DDQN provides valuable insights for path planning to reach transportation pipeline leakage points within chemical plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyyyge发布了新的文献求助20
刚刚
不想干活应助美好斓采纳,获得10
刚刚
未晚完成签到,获得积分10
1秒前
邱梓铭完成签到,获得积分10
1秒前
2秒前
DD完成签到,获得积分10
2秒前
zmmm完成签到,获得积分10
3秒前
3秒前
陌上尘开发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
星辰大海应助warburg采纳,获得10
4秒前
LAYWL完成签到,获得积分10
4秒前
九月初五完成签到,获得积分10
5秒前
爆米花应助Anatee采纳,获得10
5秒前
5秒前
DXF关闭了DXF文献求助
6秒前
哇哈哈发布了新的文献求助10
6秒前
少冰丶七分糖完成签到,获得积分10
6秒前
归去来兮发布了新的文献求助10
7秒前
甜美平文发布了新的文献求助10
7秒前
hi小豆发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
赤恩完成签到,获得积分10
8秒前
8秒前
chen发布了新的文献求助10
9秒前
酷炫book完成签到 ,获得积分10
9秒前
WQ完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
ysy完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743