A Hybrid Critical Channel Selection Framework for EEG Emotion Recognition

脑电图 计算机科学 选择(遗传算法) 情绪识别 频道(广播) 语音识别 模式识别(心理学) 人工智能 心理学 神经科学 计算机网络
作者
Gangguo Qu,Fei Wang,Jinying Bi,Zida An,Fangzhou Hu,Hao Li,Shuai Han
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 14881-14893 被引量:6
标识
DOI:10.1109/jsen.2024.3380749
摘要

In the EEG-based emotion recognition task, although the multi-channel acquisition method has advantages, it brings operational difficulty and increases the mental stress of the subjects, which affects the data quality. To effectively mine the emotional information in EEG and select the optimal Critical channel, we propose a novel critical channel selection framework for EEG emotion recognition: TFBOC-WOHDNN, and conduct extensive experiments on the SEED dataset. First, using the brain function network topological feature as a new independent evaluation index is proposed to filter 30 suboptimal critical channels in four brain regions. To effectively model the spatiotemporal dependence of EEG signals, a hybrid deep model WOHDNN is proposed that can automatically find the optimal hyperparameters. On this basis, an improved binary optimization channel selection method is proposed to effectively screen the optimal critical channels for a specified number of channels. We found that high-band gamma and beta contribute more to EEG emotion recognition, the temporal lobe and frontal lobe are critical brain regions. The selected 4-channel, 8-channel, and 12-channel optimal critical channel schemes achieved recognition accuracy rates of 91.59/0.97%, 97.33/0.70%, and 99.97/0.03%. Our schemes are significantly better than existing channel solutions, with stable and robust recognition performance, and excellent generalization performance in DEAP-based recognition tasks. This provides a new reference for the development of wearable and portable EEG sensor devices and promotes the practical application of emotion recognition systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ambit完成签到,获得积分20
1秒前
张小完成签到,获得积分20
2秒前
4秒前
TingtingGZ发布了新的文献求助10
4秒前
4秒前
5秒前
claud完成签到 ,获得积分10
6秒前
勤恳元枫完成签到,获得积分10
6秒前
6秒前
7秒前
自由醉薇完成签到 ,获得积分10
8秒前
蔚蓝天空完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
小小的手心完成签到,获得积分10
9秒前
卷卷完成签到,获得积分10
10秒前
11秒前
11秒前
顺利毕业完成签到,获得积分10
11秒前
Ambit发布了新的文献求助30
12秒前
wkjfh应助科研通管家采纳,获得10
12秒前
orixero应助懒羊羊大王采纳,获得10
12秒前
一二应助科研通管家采纳,获得10
12秒前
12秒前
zhonglv7应助科研通管家采纳,获得10
12秒前
stella完成签到,获得积分20
12秒前
12秒前
12秒前
wkjfh应助科研通管家采纳,获得20
12秒前
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
霸气映之发布了新的文献求助10
12秒前
Live应助科研通管家采纳,获得10
12秒前
无极微光应助韦小宝采纳,获得20
12秒前
wkjfh应助科研通管家采纳,获得10
12秒前
13秒前
zhonglv7应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952