亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning-Based Segmentation for Quartz Overgrowth Quantification in Geothermal Sandstone Reservoirs from Scanning Electron Microscope (SEM) Images

石英 扫描电子显微镜 地温梯度 地质学 光学显微镜 矿物学 电子显微镜 材料科学 光学 复合材料 地球物理学 古生物学 物理
作者
Sarah Sausan,Arkanu Andaru
出处
期刊:SPE Western Regional Meeting
标识
DOI:10.2118/218862-ms
摘要

Abstract This paper presents an update on a dynamic segmentation algorithm for detecting quartz overgrowths in geothermal reservoirs using Scanning Electron Microscope (SEM) images. Previously, the Random Forest algorithm had been employed in the automated workflow for quartz overgrowth detection from SEM images. A 75% accuracy score was achieved from the model training, indicating a promising start. This model was found to differentiate successfully between detrital quartz grains and their diagenetic quartz overgrowths; it was also demonstrated that it could identify porosity and other minerals. A continuation of the algorithm development in the automated workflow is explored in this paper. Deep learning methods using U-net architecture is investigated to find the most fitting algorithm for detecting quartz overgrowth. The previously utilized texture-based feature extraction techniques are still incorporated. Normalization and dynamic overlaying algorithms are applied to address variations in image brightness and contrast and align BSE and CL images accurately, ensuring reliable segmentation. The segmentation process involves the coordination of BSE and CL images, utilizing their respective strengths, and overlaying them to achieve comprehensive results. This is followed by a two-fold model-building approach using separate segmentation models for BSE and CL images, which are then combined to distinguish between pore space, quartz grain, and quartz overgrowth. The evaluation of the U-Net model's performance involves analysis of training and validation accuracy, loss, and intersection over union (IoU) over 50 epochs. Results demonstrate the model's capability to generalize and learn effectively, with the segmentation process showing proficiency in differentiating between the target mineralogy features. However, variability in performance across different datasets suggests the need for further model optimization. In conclusion, the integration of U-Net into SEM image analysis for mineralogy detection represents a significant technological advance in geoscience, offering a more efficient, precise, and automated approach to understanding and exploiting geothermal energy resources. The findings also highlight opportunities for future research, such as exploring a variety of deep learning models, fine-tuning through transfer learning, and developing user-friendly tools for rapid mineralogy segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
32秒前
39秒前
lovelife发布了新的文献求助10
42秒前
44秒前
聪明的云完成签到 ,获得积分10
49秒前
阿泽完成签到 ,获得积分10
56秒前
58秒前
张泽崇发布了新的文献求助10
1分钟前
1206425219密完成签到,获得积分10
1分钟前
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
2分钟前
Aliothae完成签到,获得积分20
2分钟前
科研通AI5应助929采纳,获得10
2分钟前
HLT完成签到 ,获得积分10
2分钟前
3分钟前
小秋发布了新的文献求助10
3分钟前
CC完成签到,获得积分0
3分钟前
3分钟前
3分钟前
3分钟前
Jero21发布了新的文献求助10
4分钟前
小秋完成签到,获得积分10
4分钟前
Jero21完成签到,获得积分20
4分钟前
4分钟前
4分钟前
4分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
GIA完成签到,获得积分10
5分钟前
5分钟前
Marshall完成签到 ,获得积分10
6分钟前
范振杰完成签到,获得积分10
6分钟前
6分钟前
Hayat应助科研通管家采纳,获得10
6分钟前
赘婿应助科研通管家采纳,获得30
6分钟前
英俊的铭应助科研通管家采纳,获得10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155657
捐赠科研通 3245410
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216