已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning-Based Segmentation for Quartz Overgrowth Quantification in Geothermal Sandstone Reservoirs from Scanning Electron Microscope (SEM) Images

石英 扫描电子显微镜 地温梯度 地质学 光学显微镜 矿物学 电子显微镜 材料科学 光学 复合材料 地球物理学 物理 古生物学
作者
Sarah Sausan,Arkanu Andaru
出处
期刊:SPE Western Regional Meeting
标识
DOI:10.2118/218862-ms
摘要

Abstract This paper presents an update on a dynamic segmentation algorithm for detecting quartz overgrowths in geothermal reservoirs using Scanning Electron Microscope (SEM) images. Previously, the Random Forest algorithm had been employed in the automated workflow for quartz overgrowth detection from SEM images. A 75% accuracy score was achieved from the model training, indicating a promising start. This model was found to differentiate successfully between detrital quartz grains and their diagenetic quartz overgrowths; it was also demonstrated that it could identify porosity and other minerals. A continuation of the algorithm development in the automated workflow is explored in this paper. Deep learning methods using U-net architecture is investigated to find the most fitting algorithm for detecting quartz overgrowth. The previously utilized texture-based feature extraction techniques are still incorporated. Normalization and dynamic overlaying algorithms are applied to address variations in image brightness and contrast and align BSE and CL images accurately, ensuring reliable segmentation. The segmentation process involves the coordination of BSE and CL images, utilizing their respective strengths, and overlaying them to achieve comprehensive results. This is followed by a two-fold model-building approach using separate segmentation models for BSE and CL images, which are then combined to distinguish between pore space, quartz grain, and quartz overgrowth. The evaluation of the U-Net model's performance involves analysis of training and validation accuracy, loss, and intersection over union (IoU) over 50 epochs. Results demonstrate the model's capability to generalize and learn effectively, with the segmentation process showing proficiency in differentiating between the target mineralogy features. However, variability in performance across different datasets suggests the need for further model optimization. In conclusion, the integration of U-Net into SEM image analysis for mineralogy detection represents a significant technological advance in geoscience, offering a more efficient, precise, and automated approach to understanding and exploiting geothermal energy resources. The findings also highlight opportunities for future research, such as exploring a variety of deep learning models, fine-tuning through transfer learning, and developing user-friendly tools for rapid mineralogy segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
4秒前
5秒前
大福完成签到,获得积分10
6秒前
6秒前
ljycasey发布了新的文献求助10
9秒前
碧蓝皮卡丘完成签到,获得积分10
11秒前
15秒前
ljycasey完成签到,获得积分10
16秒前
天天快乐应助候月采纳,获得30
18秒前
20秒前
22秒前
26秒前
南与晚霞发布了新的文献求助10
27秒前
30秒前
30秒前
31秒前
默默完成签到,获得积分10
33秒前
Y123发布了新的文献求助10
35秒前
南与晚霞完成签到,获得积分10
36秒前
Rita发布了新的文献求助10
36秒前
lili发布了新的文献求助10
38秒前
inRe完成签到,获得积分10
38秒前
淡然元彤应助粉色棉毛裤采纳,获得10
40秒前
40秒前
Stitch完成签到 ,获得积分10
41秒前
雷锋完成签到 ,获得积分10
45秒前
SS发布了新的文献求助10
46秒前
英姑应助rebee采纳,获得10
47秒前
英俊的铭应助默默采纳,获得10
54秒前
呵呵发布了新的文献求助20
55秒前
56秒前
nenoaowu应助SS采纳,获得30
56秒前
嗯哼应助科研通管家采纳,获得20
58秒前
英俊的铭应助科研通管家采纳,获得10
58秒前
58秒前
嗯哼应助科研通管家采纳,获得20
58秒前
杳鸢应助科研通管家采纳,获得10
59秒前
杳鸢应助科研通管家采纳,获得10
59秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234488
求助须知:如何正确求助?哪些是违规求助? 2880858
关于积分的说明 8217231
捐赠科研通 2548429
什么是DOI,文献DOI怎么找? 1377761
科研通“疑难数据库(出版商)”最低求助积分说明 647959
邀请新用户注册赠送积分活动 623314