已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An improved YOLOv5-based method for multi-species tea shoot detection and picking point location in complex backgrounds

开枪 增采样 计算机科学 人工智能 计算机视觉 模式识别(心理学) 数学 园艺 图像(数学) 生物
作者
Luyu Shuai,Jiong Mu,Xueqin Jiang,Peng Chen,Boda Zhang,Hongdan Li,Yuchao Wang,Zhiyong Li
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:231: 117-132 被引量:18
标识
DOI:10.1016/j.biosystemseng.2023.06.007
摘要

Accurate detection of tea shoots and precise location of picking points are prerequisites for automated, intelligent and accurate tea picking. A method was developed for the detection of tea shoots and key points and the localisation of picking points in complex environments. Images of four types of tea shoots were collected from multiple fields of view in a tea plantation over two months and labelling criteria were established. The YOLO-Tea model was developed based on the YOLOv5 network model, which uses a content-based upsampling operator (CARAFE) with a larger field of perception to implement the tea shoot feature upsampling operation, adds a convolutional attention mechanism module (CBAM) to focus the model on both channel and spatial dimensions to detect and localise important areas of tea shoots in a large field of view. The Bottleneck Transformers module was used to inject global self-focus for residuals to create long-distance dependencies on the tea shot feature images, and a six-point landmark regression head was added. The experimental results demonstrated that the YOLO-Tea model improved the mean Average Precision (mAP) value of tea shoots and their key points by 5.26% compared to YOLOv5. Finally, we use image processing methods to locate picking point positions based on key point information during the model inference phase. This study has theoretical and practical implications for the detection of tea shoots and their key points, tea shoot alignment, phenotype identification, pose estimation and picking locations of premium teas in complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助zp采纳,获得10
2秒前
yikiheting完成签到,获得积分20
3秒前
6秒前
Ava应助聂超群采纳,获得10
7秒前
大个应助聂超群采纳,获得10
7秒前
9秒前
9秒前
10秒前
11秒前
王青完成签到,获得积分20
12秒前
zp发布了新的文献求助10
14秒前
15秒前
leslie发布了新的文献求助10
16秒前
16秒前
科研老头发布了新的文献求助10
17秒前
17秒前
遇到困难睡大觉完成签到,获得积分10
17秒前
温敏完成签到,获得积分10
18秒前
Alice完成签到 ,获得积分10
18秒前
18秒前
王青发布了新的文献求助10
20秒前
落寞臻发布了新的文献求助10
21秒前
Jasper应助QXS采纳,获得10
23秒前
mouxq发布了新的文献求助30
23秒前
24秒前
28秒前
28秒前
29秒前
田様应助zp采纳,获得10
33秒前
33秒前
sci来完成签到,获得积分10
34秒前
Sandy完成签到,获得积分10
34秒前
丘比特应助科研通管家采纳,获得10
35秒前
Arjun应助科研通管家采纳,获得50
35秒前
华仔应助科研通管家采纳,获得30
35秒前
完美世界应助科研通管家采纳,获得10
36秒前
36秒前
无花果应助科研通管家采纳,获得10
36秒前
lzy发布了新的文献求助10
38秒前
万能图书馆应助h268179采纳,获得10
42秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261321
求助须知:如何正确求助?哪些是违规求助? 2902161
关于积分的说明 8319043
捐赠科研通 2571932
什么是DOI,文献DOI怎么找? 1397362
科研通“疑难数据库(出版商)”最低求助积分说明 653708
邀请新用户注册赠送积分活动 632216