重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape

计算机科学 转录因子 深层神经网络 人工智能 计算生物学 人工神经网络 序列(生物学) 模式识别(心理学) 基因 生物 遗传学
作者
Pengju Ding,Yifei Wang,Xinyu Zhang,Xin Gao,Guozhu Liu,Bin Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:20
标识
DOI:10.1093/bib/bbad231
摘要

Precise targeting of transcription factor binding sites (TFBSs) is essential to comprehending transcriptional regulatory processes and investigating cellular function. Although several deep learning algorithms have been created to predict TFBSs, the models' intrinsic mechanisms and prediction results are difficult to explain. There is still room for improvement in prediction performance. We present DeepSTF, a unique deep-learning architecture for predicting TFBSs by integrating DNA sequence and shape profiles. We use the improved transformer encoder structure for the first time in the TFBSs prediction approach. DeepSTF extracts DNA higher-order sequence features using stacked convolutional neural networks (CNNs), whereas rich DNA shape profiles are extracted by combining improved transformer encoder structure and bidirectional long short-term memory (Bi-LSTM), and, finally, the derived higher-order sequence features and representative shape profiles are integrated into the channel dimension to achieve accurate TFBSs prediction. Experiments on 165 ENCODE chromatin immunoprecipitation sequencing (ChIP-seq) datasets show that DeepSTF considerably outperforms several state-of-the-art algorithms in predicting TFBSs, and we explain the usefulness of the transformer encoder structure and the combined strategy using sequence features and shape profiles in capturing multiple dependencies and learning essential features. In addition, this paper examines the significance of DNA shape features predicting TFBSs. The source code of DeepSTF is available at https://github.com/YuBinLab-QUST/DeepSTF/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊的铭应助浮世采纳,获得10
刚刚
刚刚
乘月发布了新的文献求助10
刚刚
机灵瑛完成签到,获得积分10
刚刚
木木木发布了新的文献求助10
1秒前
隐形曼青应助潘潘采纳,获得10
1秒前
1秒前
高兴的丝发布了新的文献求助10
1秒前
1秒前
要减肥的雪巧完成签到,获得积分10
1秒前
852应助迅速如柏采纳,获得10
1秒前
www完成签到,获得积分10
2秒前
玛卡巴卡发布了新的文献求助10
2秒前
芜湖完成签到,获得积分20
3秒前
3秒前
marven关注了科研通微信公众号
3秒前
乐乐应助lll采纳,获得10
3秒前
3秒前
亚迪发布了新的文献求助10
4秒前
houhin完成签到,获得积分20
4秒前
星睿完成签到,获得积分10
4秒前
jojojojojo发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
chen发布了新的文献求助10
6秒前
zxxxx完成签到,获得积分10
6秒前
mogumogu发布了新的文献求助10
6秒前
Mhl完成签到 ,获得积分20
6秒前
实验室应助Woaimama724采纳,获得30
6秒前
Fool发布了新的文献求助20
7秒前
量子星尘发布了新的文献求助10
7秒前
健忘梦凡发布了新的文献求助10
7秒前
哎呦喂完成签到,获得积分10
7秒前
7秒前
制杖大师发布了新的文献求助10
8秒前
狂跳的脉搏完成签到,获得积分10
8秒前
星睿发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467154
求助须知:如何正确求助?哪些是违规求助? 4570810
关于积分的说明 14327328
捐赠科研通 4497390
什么是DOI,文献DOI怎么找? 2463880
邀请新用户注册赠送积分活动 1452837
关于科研通互助平台的介绍 1427632