DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape

计算机科学 转录因子 深层神经网络 人工智能 计算生物学 人工神经网络 序列(生物学) 模式识别(心理学) 基因 生物 遗传学
作者
Pengju Ding,Yifei Wang,Xinyu Zhang,Xin Gao,Guozhu Liu,Bin Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:20
标识
DOI:10.1093/bib/bbad231
摘要

Precise targeting of transcription factor binding sites (TFBSs) is essential to comprehending transcriptional regulatory processes and investigating cellular function. Although several deep learning algorithms have been created to predict TFBSs, the models' intrinsic mechanisms and prediction results are difficult to explain. There is still room for improvement in prediction performance. We present DeepSTF, a unique deep-learning architecture for predicting TFBSs by integrating DNA sequence and shape profiles. We use the improved transformer encoder structure for the first time in the TFBSs prediction approach. DeepSTF extracts DNA higher-order sequence features using stacked convolutional neural networks (CNNs), whereas rich DNA shape profiles are extracted by combining improved transformer encoder structure and bidirectional long short-term memory (Bi-LSTM), and, finally, the derived higher-order sequence features and representative shape profiles are integrated into the channel dimension to achieve accurate TFBSs prediction. Experiments on 165 ENCODE chromatin immunoprecipitation sequencing (ChIP-seq) datasets show that DeepSTF considerably outperforms several state-of-the-art algorithms in predicting TFBSs, and we explain the usefulness of the transformer encoder structure and the combined strategy using sequence features and shape profiles in capturing multiple dependencies and learning essential features. In addition, this paper examines the significance of DNA shape features predicting TFBSs. The source code of DeepSTF is available at https://github.com/YuBinLab-QUST/DeepSTF/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗心的大门发布了新的文献求助200
刚刚
Hello应助magiczhu采纳,获得10
刚刚
1秒前
1秒前
萧东辰完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
xinxin发布了新的文献求助10
1秒前
动人的怀柔完成签到,获得积分10
2秒前
J985523发布了新的文献求助10
2秒前
Wangjingxuan完成签到,获得积分10
3秒前
3秒前
图南发布了新的文献求助10
4秒前
5秒前
5秒前
鱿鱼发布了新的文献求助10
5秒前
顾矜应助whynot采纳,获得10
6秒前
6秒前
Owen应助胖圈儿采纳,获得10
7秒前
DDDD发布了新的文献求助10
7秒前
7秒前
优秀的人发布了新的文献求助10
7秒前
KING完成签到,获得积分10
7秒前
在水一方应助YKX采纳,获得10
8秒前
所所应助活泼媚颜采纳,获得20
10秒前
10秒前
蓝莓发布了新的文献求助10
10秒前
10秒前
李健应助快乐芝麻采纳,获得10
11秒前
可爱的函函应助鱿鱼采纳,获得10
12秒前
qizuming123完成签到,获得积分20
12秒前
12秒前
blue完成签到,获得积分10
13秒前
情怀应助嗯哼采纳,获得10
13秒前
JamesPei应助淡然又菡采纳,获得10
13秒前
13秒前
J985523完成签到,获得积分10
13秒前
迪卢克发布了新的文献求助10
14秒前
快乐咖啡完成签到,获得积分10
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430996
求助须知:如何正确求助?哪些是违规求助? 4544087
关于积分的说明 14190586
捐赠科研通 4462638
什么是DOI,文献DOI怎么找? 2446582
邀请新用户注册赠送积分活动 1438033
关于科研通互助平台的介绍 1414576