DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape

计算机科学 转录因子 深层神经网络 人工智能 计算生物学 人工神经网络 序列(生物学) 模式识别(心理学) 基因 生物 遗传学
作者
Pengju Ding,Yifei Wang,Xinyu Zhang,Xin Gao,Guozhu Liu,Bin Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:20
标识
DOI:10.1093/bib/bbad231
摘要

Precise targeting of transcription factor binding sites (TFBSs) is essential to comprehending transcriptional regulatory processes and investigating cellular function. Although several deep learning algorithms have been created to predict TFBSs, the models' intrinsic mechanisms and prediction results are difficult to explain. There is still room for improvement in prediction performance. We present DeepSTF, a unique deep-learning architecture for predicting TFBSs by integrating DNA sequence and shape profiles. We use the improved transformer encoder structure for the first time in the TFBSs prediction approach. DeepSTF extracts DNA higher-order sequence features using stacked convolutional neural networks (CNNs), whereas rich DNA shape profiles are extracted by combining improved transformer encoder structure and bidirectional long short-term memory (Bi-LSTM), and, finally, the derived higher-order sequence features and representative shape profiles are integrated into the channel dimension to achieve accurate TFBSs prediction. Experiments on 165 ENCODE chromatin immunoprecipitation sequencing (ChIP-seq) datasets show that DeepSTF considerably outperforms several state-of-the-art algorithms in predicting TFBSs, and we explain the usefulness of the transformer encoder structure and the combined strategy using sequence features and shape profiles in capturing multiple dependencies and learning essential features. In addition, this paper examines the significance of DNA shape features predicting TFBSs. The source code of DeepSTF is available at https://github.com/YuBinLab-QUST/DeepSTF/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林霖完成签到,获得积分10
刚刚
Helic完成签到,获得积分10
1秒前
1秒前
1秒前
林结衣完成签到,获得积分10
1秒前
丘比特应助开心水风采纳,获得10
2秒前
Jiang_sir完成签到,获得积分10
2秒前
小李爱查文献完成签到,获得积分10
2秒前
风雅完成签到,获得积分10
2秒前
3秒前
卡拉肖客发布了新的文献求助10
3秒前
NexusExplorer应助lixiaofan采纳,获得10
3秒前
3秒前
teng完成签到,获得积分10
4秒前
summer应助滴答滴采纳,获得10
5秒前
5秒前
22完成签到,获得积分10
5秒前
5秒前
小雨发布了新的文献求助10
5秒前
5秒前
科研通AI6应助悠然采纳,获得10
5秒前
多C多快乐发布了新的文献求助10
6秒前
莫西莫西发布了新的文献求助10
6秒前
Guo99完成签到,获得积分10
7秒前
稳重一鸣完成签到,获得积分20
7秒前
机智亦云完成签到,获得积分10
7秒前
7秒前
小丑应助尕辉采纳,获得10
8秒前
8秒前
li发布了新的文献求助10
8秒前
Momomo应助务实的乘云采纳,获得10
8秒前
XuZ完成签到,获得积分10
8秒前
8秒前
专注的兰完成签到 ,获得积分10
8秒前
kkk12245完成签到,获得积分20
9秒前
9秒前
彭于晏应助刘萌采纳,获得10
9秒前
kara发布了新的文献求助10
9秒前
zhouyms完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477701
求助须知:如何正确求助?哪些是违规求助? 4579485
关于积分的说明 14369133
捐赠科研通 4507697
什么是DOI,文献DOI怎么找? 2470120
邀请新用户注册赠送积分活动 1457068
关于科研通互助平台的介绍 1431055