DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape

计算机科学 转录因子 深层神经网络 人工智能 计算生物学 人工神经网络 序列(生物学) 模式识别(心理学) 基因 生物 遗传学
作者
Pengju Ding,Yifei Wang,Xinyu Zhang,Xin Gao,Guozhu Liu,Bin Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:20
标识
DOI:10.1093/bib/bbad231
摘要

Precise targeting of transcription factor binding sites (TFBSs) is essential to comprehending transcriptional regulatory processes and investigating cellular function. Although several deep learning algorithms have been created to predict TFBSs, the models' intrinsic mechanisms and prediction results are difficult to explain. There is still room for improvement in prediction performance. We present DeepSTF, a unique deep-learning architecture for predicting TFBSs by integrating DNA sequence and shape profiles. We use the improved transformer encoder structure for the first time in the TFBSs prediction approach. DeepSTF extracts DNA higher-order sequence features using stacked convolutional neural networks (CNNs), whereas rich DNA shape profiles are extracted by combining improved transformer encoder structure and bidirectional long short-term memory (Bi-LSTM), and, finally, the derived higher-order sequence features and representative shape profiles are integrated into the channel dimension to achieve accurate TFBSs prediction. Experiments on 165 ENCODE chromatin immunoprecipitation sequencing (ChIP-seq) datasets show that DeepSTF considerably outperforms several state-of-the-art algorithms in predicting TFBSs, and we explain the usefulness of the transformer encoder structure and the combined strategy using sequence features and shape profiles in capturing multiple dependencies and learning essential features. In addition, this paper examines the significance of DNA shape features predicting TFBSs. The source code of DeepSTF is available at https://github.com/YuBinLab-QUST/DeepSTF/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
2秒前
rrr00011完成签到,获得积分10
2秒前
马梓萌完成签到,获得积分10
3秒前
3秒前
清爽的芷蕾完成签到,获得积分10
4秒前
4秒前
浮游应助式微采纳,获得20
6秒前
1020发布了新的文献求助10
6秒前
CipherSage应助rrr00011采纳,获得10
6秒前
高贵路灯完成签到,获得积分10
7秒前
田田发布了新的文献求助10
7秒前
文艺弼发布了新的文献求助10
7秒前
zz发布了新的文献求助10
7秒前
7秒前
陈琳发布了新的文献求助10
8秒前
8秒前
cqy发布了新的文献求助10
8秒前
鹤九发布了新的文献求助10
10秒前
小盆呐发布了新的文献求助10
10秒前
FashionBoy应助马梓萌采纳,获得10
11秒前
杯中冰糖茶完成签到,获得积分10
11秒前
xzy998应助暴躁土拨鼠采纳,获得10
12秒前
12秒前
bkagyin应助stoic采纳,获得10
12秒前
rrrick发布了新的文献求助10
12秒前
13秒前
轻松凝竹发布了新的文献求助10
13秒前
milv5完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
15秒前
16秒前
kysl发布了新的文献求助10
17秒前
在水一方应助露露采纳,获得10
18秒前
18秒前
木子发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933494
求助须知:如何正确求助?哪些是违规求助? 4201667
关于积分的说明 13054312
捐赠科研通 3975738
什么是DOI,文献DOI怎么找? 2178554
邀请新用户注册赠送积分活动 1194827
关于科研通互助平台的介绍 1106265