DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape

计算机科学 转录因子 深层神经网络 人工智能 计算生物学 人工神经网络 序列(生物学) 模式识别(心理学) 基因 生物 遗传学
作者
Pengju Ding,Yifei Wang,Xinyu Zhang,Xin Gao,Guozhu Liu,Bin Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:20
标识
DOI:10.1093/bib/bbad231
摘要

Precise targeting of transcription factor binding sites (TFBSs) is essential to comprehending transcriptional regulatory processes and investigating cellular function. Although several deep learning algorithms have been created to predict TFBSs, the models' intrinsic mechanisms and prediction results are difficult to explain. There is still room for improvement in prediction performance. We present DeepSTF, a unique deep-learning architecture for predicting TFBSs by integrating DNA sequence and shape profiles. We use the improved transformer encoder structure for the first time in the TFBSs prediction approach. DeepSTF extracts DNA higher-order sequence features using stacked convolutional neural networks (CNNs), whereas rich DNA shape profiles are extracted by combining improved transformer encoder structure and bidirectional long short-term memory (Bi-LSTM), and, finally, the derived higher-order sequence features and representative shape profiles are integrated into the channel dimension to achieve accurate TFBSs prediction. Experiments on 165 ENCODE chromatin immunoprecipitation sequencing (ChIP-seq) datasets show that DeepSTF considerably outperforms several state-of-the-art algorithms in predicting TFBSs, and we explain the usefulness of the transformer encoder structure and the combined strategy using sequence features and shape profiles in capturing multiple dependencies and learning essential features. In addition, this paper examines the significance of DNA shape features predicting TFBSs. The source code of DeepSTF is available at https://github.com/YuBinLab-QUST/DeepSTF/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助hjf采纳,获得10
刚刚
1秒前
12214发布了新的文献求助10
1秒前
1秒前
2秒前
行走的绅士完成签到,获得积分10
2秒前
爆米花应助比巴卜采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
5秒前
翁雁丝完成签到 ,获得积分10
5秒前
李繁蕊发布了新的文献求助10
6秒前
田様应助王玉河采纳,获得10
6秒前
8秒前
Philiadddd完成签到,获得积分10
8秒前
安超楷发布了新的文献求助10
9秒前
烟花应助55555555采纳,获得10
9秒前
10秒前
霍元正发布了新的文献求助10
11秒前
12214完成签到,获得积分10
11秒前
心灵美金毛完成签到,获得积分10
11秒前
fc小肥杨发布了新的文献求助10
13秒前
15秒前
16秒前
今后应助彳亍者采纳,获得10
16秒前
赘婿应助Fairyvivi采纳,获得10
17秒前
18秒前
wangyi邮箱完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
minisword发布了新的文献求助30
20秒前
研友_8op5gL发布了新的文献求助10
20秒前
香蕉觅云应助翁雁丝采纳,获得10
21秒前
李健应助live采纳,获得10
21秒前
FunHigh发布了新的文献求助10
22秒前
王玉河发布了新的文献求助10
22秒前
魏家乐发布了新的文献求助10
22秒前
wu完成签到 ,获得积分10
23秒前
美好雨竹完成签到 ,获得积分10
23秒前
啊啊发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975814
求助须知:如何正确求助?哪些是违规求助? 3520123
关于积分的说明 11201020
捐赠科研通 3256502
什么是DOI,文献DOI怎么找? 1798347
邀请新用户注册赠送积分活动 877523
科研通“疑难数据库(出版商)”最低求助积分说明 806417