亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape

计算机科学 转录因子 深层神经网络 人工智能 计算生物学 人工神经网络 序列(生物学) 模式识别(心理学) 基因 生物 遗传学
作者
Pengju Ding,Yifei Wang,Xinyu Zhang,Xin Gao,Guozhu Liu,Bin Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:20
标识
DOI:10.1093/bib/bbad231
摘要

Precise targeting of transcription factor binding sites (TFBSs) is essential to comprehending transcriptional regulatory processes and investigating cellular function. Although several deep learning algorithms have been created to predict TFBSs, the models' intrinsic mechanisms and prediction results are difficult to explain. There is still room for improvement in prediction performance. We present DeepSTF, a unique deep-learning architecture for predicting TFBSs by integrating DNA sequence and shape profiles. We use the improved transformer encoder structure for the first time in the TFBSs prediction approach. DeepSTF extracts DNA higher-order sequence features using stacked convolutional neural networks (CNNs), whereas rich DNA shape profiles are extracted by combining improved transformer encoder structure and bidirectional long short-term memory (Bi-LSTM), and, finally, the derived higher-order sequence features and representative shape profiles are integrated into the channel dimension to achieve accurate TFBSs prediction. Experiments on 165 ENCODE chromatin immunoprecipitation sequencing (ChIP-seq) datasets show that DeepSTF considerably outperforms several state-of-the-art algorithms in predicting TFBSs, and we explain the usefulness of the transformer encoder structure and the combined strategy using sequence features and shape profiles in capturing multiple dependencies and learning essential features. In addition, this paper examines the significance of DNA shape features predicting TFBSs. The source code of DeepSTF is available at https://github.com/YuBinLab-QUST/DeepSTF/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
1577完成签到,获得积分10
6秒前
6秒前
1577发布了新的文献求助10
10秒前
Ruby完成签到 ,获得积分10
13秒前
shushu完成签到 ,获得积分10
18秒前
浮游应助咸鱼采纳,获得10
18秒前
20秒前
28秒前
30秒前
31秒前
ORAzzz发布了新的文献求助10
33秒前
33秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
suyu完成签到 ,获得积分10
41秒前
42秒前
43秒前
53秒前
英姑应助moon采纳,获得10
53秒前
123发布了新的文献求助10
57秒前
ORAzzz完成签到,获得积分10
1分钟前
1分钟前
1分钟前
wjw123发布了新的文献求助10
1分钟前
1分钟前
浮游应助Zert采纳,获得10
1分钟前
酷酷一笑完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助123采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
123发布了新的文献求助10
2分钟前
Zert发布了新的文献求助10
2分钟前
浮游应助虞美人采纳,获得10
2分钟前
2分钟前
2分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346150
求助须知:如何正确求助?哪些是违规求助? 4480898
关于积分的说明 13946978
捐赠科研通 4378545
什么是DOI,文献DOI怎么找? 2405903
邀请新用户注册赠送积分活动 1398491
关于科研通互助平台的介绍 1371107