清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape

计算机科学 转录因子 深层神经网络 人工智能 计算生物学 人工神经网络 序列(生物学) 模式识别(心理学) 基因 生物 遗传学
作者
Pengju Ding,Yifei Wang,Xinyu Zhang,Xin Gao,Guozhu Liu,Bin Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:20
标识
DOI:10.1093/bib/bbad231
摘要

Precise targeting of transcription factor binding sites (TFBSs) is essential to comprehending transcriptional regulatory processes and investigating cellular function. Although several deep learning algorithms have been created to predict TFBSs, the models' intrinsic mechanisms and prediction results are difficult to explain. There is still room for improvement in prediction performance. We present DeepSTF, a unique deep-learning architecture for predicting TFBSs by integrating DNA sequence and shape profiles. We use the improved transformer encoder structure for the first time in the TFBSs prediction approach. DeepSTF extracts DNA higher-order sequence features using stacked convolutional neural networks (CNNs), whereas rich DNA shape profiles are extracted by combining improved transformer encoder structure and bidirectional long short-term memory (Bi-LSTM), and, finally, the derived higher-order sequence features and representative shape profiles are integrated into the channel dimension to achieve accurate TFBSs prediction. Experiments on 165 ENCODE chromatin immunoprecipitation sequencing (ChIP-seq) datasets show that DeepSTF considerably outperforms several state-of-the-art algorithms in predicting TFBSs, and we explain the usefulness of the transformer encoder structure and the combined strategy using sequence features and shape profiles in capturing multiple dependencies and learning essential features. In addition, this paper examines the significance of DNA shape features predicting TFBSs. The source code of DeepSTF is available at https://github.com/YuBinLab-QUST/DeepSTF/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YifanWang应助一个小胖子采纳,获得10
13秒前
完美书易完成签到 ,获得积分10
19秒前
23秒前
23秒前
氟锑酸完成签到 ,获得积分10
23秒前
科科通通完成签到,获得积分10
24秒前
YifanWang应助一个小胖子采纳,获得10
29秒前
jasmine完成签到,获得积分10
30秒前
小丸子发布了新的文献求助10
36秒前
XX2完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
36秒前
科研通AI6应助小丸子采纳,获得50
46秒前
一个小胖子完成签到,获得积分10
47秒前
brown完成签到,获得积分10
50秒前
风铃完成签到,获得积分20
51秒前
LL完成签到,获得积分10
52秒前
2903827997完成签到,获得积分10
1分钟前
飞翔的霸天哥应助风铃采纳,获得30
1分钟前
Michael完成签到 ,获得积分10
1分钟前
1323834289完成签到,获得积分10
1分钟前
XX完成签到,获得积分10
1分钟前
FMHChan完成签到,获得积分10
1分钟前
trophozoite完成签到 ,获得积分10
1分钟前
大大大忽悠完成签到 ,获得积分10
1分钟前
1分钟前
无言发布了新的文献求助10
1分钟前
123发布了新的文献求助10
1分钟前
prrrratt完成签到,获得积分10
1分钟前
喜喜完成签到,获得积分10
1分钟前
Syan完成签到,获得积分10
1分钟前
BowieHuang完成签到,获得积分10
1分钟前
1分钟前
真的OK完成签到,获得积分0
1分钟前
朝夕之晖完成签到,获得积分10
1分钟前
王jyk完成签到,获得积分10
1分钟前
CGBIO完成签到,获得积分10
1分钟前
美满惜寒完成签到,获得积分10
1分钟前
啪嗒大白球完成签到,获得积分10
1分钟前
kkscanl完成签到 ,获得积分10
1分钟前
zwzw完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438700
求助须知:如何正确求助?哪些是违规求助? 4549828
关于积分的说明 14221061
捐赠科研通 4470786
什么是DOI,文献DOI怎么找? 2450023
邀请新用户注册赠送积分活动 1440973
关于科研通互助平台的介绍 1417473