亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape

计算机科学 转录因子 深层神经网络 人工智能 计算生物学 人工神经网络 序列(生物学) 模式识别(心理学) 基因 生物 遗传学
作者
Pengju Ding,Yifei Wang,Xinyu Zhang,Xin Gao,Guozhu Liu,Bin Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:20
标识
DOI:10.1093/bib/bbad231
摘要

Precise targeting of transcription factor binding sites (TFBSs) is essential to comprehending transcriptional regulatory processes and investigating cellular function. Although several deep learning algorithms have been created to predict TFBSs, the models' intrinsic mechanisms and prediction results are difficult to explain. There is still room for improvement in prediction performance. We present DeepSTF, a unique deep-learning architecture for predicting TFBSs by integrating DNA sequence and shape profiles. We use the improved transformer encoder structure for the first time in the TFBSs prediction approach. DeepSTF extracts DNA higher-order sequence features using stacked convolutional neural networks (CNNs), whereas rich DNA shape profiles are extracted by combining improved transformer encoder structure and bidirectional long short-term memory (Bi-LSTM), and, finally, the derived higher-order sequence features and representative shape profiles are integrated into the channel dimension to achieve accurate TFBSs prediction. Experiments on 165 ENCODE chromatin immunoprecipitation sequencing (ChIP-seq) datasets show that DeepSTF considerably outperforms several state-of-the-art algorithms in predicting TFBSs, and we explain the usefulness of the transformer encoder structure and the combined strategy using sequence features and shape profiles in capturing multiple dependencies and learning essential features. In addition, this paper examines the significance of DNA shape features predicting TFBSs. The source code of DeepSTF is available at https://github.com/YuBinLab-QUST/DeepSTF/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
7秒前
Koala04完成签到,获得积分10
41秒前
45秒前
cy0824完成签到 ,获得积分10
47秒前
飞快的孱发布了新的文献求助10
51秒前
1分钟前
jitianxing发布了新的文献求助10
1分钟前
1分钟前
2分钟前
科研通AI5应助jitianxing采纳,获得10
3分钟前
我是老大应助科研通管家采纳,获得10
4分钟前
forest完成签到,获得积分10
4分钟前
4分钟前
jitianxing发布了新的文献求助10
4分钟前
vbnn完成签到 ,获得积分10
4分钟前
冷傲半邪完成签到,获得积分10
5分钟前
无幻完成签到 ,获得积分10
5分钟前
松松完成签到 ,获得积分10
5分钟前
5分钟前
CES_SH完成签到,获得积分10
5分钟前
数乱了梨花完成签到 ,获得积分0
5分钟前
已知中的未知完成签到 ,获得积分10
6分钟前
6分钟前
袁梦发布了新的文献求助10
6分钟前
科研通AI6应助袁梦采纳,获得10
6分钟前
上官若男应助马良采纳,获得10
7分钟前
贰鸟完成签到,获得积分0
7分钟前
7分钟前
科研通AI5应助jitianxing采纳,获得10
7分钟前
马良发布了新的文献求助10
7分钟前
7分钟前
花落无声完成签到 ,获得积分10
7分钟前
jitianxing发布了新的文献求助10
7分钟前
jitianxing完成签到,获得积分20
7分钟前
科目三应助科研通管家采纳,获得10
7分钟前
科研通AI5应助jitianxing采纳,获得10
8分钟前
沉默白桃完成签到 ,获得积分10
9分钟前
感动清炎完成签到,获得积分10
9分钟前
Ava应助oleskarabach采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582451
求助须知:如何正确求助?哪些是违规求助? 4000198
关于积分的说明 12382246
捐赠科研通 3675167
什么是DOI,文献DOI怎么找? 2025731
邀请新用户注册赠送积分活动 1059367
科研通“疑难数据库(出版商)”最低求助积分说明 946069