Cross-view graph contrastive learning with hypergraph

超图 计算机科学 图形 空图形 折线图 电压图 理论计算机科学 离散数学 数学
作者
Jianian Zhu,Weixin Zeng,Junfeng Zhang,Jiuyang Tang,Xiang Zhao
出处
期刊:Information Fusion [Elsevier]
卷期号:99: 101867-101867 被引量:10
标识
DOI:10.1016/j.inffus.2023.101867
摘要

Graph contrastive learning (GCL) provides a new perspective to alleviate the reliance on labeled data for graph representation learning. Recent efforts on GCL leverage various graph augmentation strategies, i.e., node dropping and edge masking, to create augmented views of the original graph, and then contrast the representations in these augmented views to learn expressive graph embeddings. Nevertheless, the contrasting is still conducted between small variations of the original graph, where limited information can be extracted. In this work, for the first time, we propose to use hypergraph to establish a new view for graph contrastive learning. Specifically, for each graph, we construct its corresponding hypergraph, and then contrast the graph representations learned in the hypergraph view and the original graph view, by which the high-order information of a graph can be captured to produce graph representations of higher quality. Furthermore, to bridge the potential gap between the graph and hypergraph representations, we utilize the diffusion model to exchange the information contained in these two views, enabling better graph contrastive learning. We evaluate our proposal with a collection of experiments, and the empirical results validate that the proposed model can improve node and graph classification performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助熊熊阁采纳,获得10
刚刚
初见完成签到,获得积分10
刚刚
五十完成签到 ,获得积分10
2秒前
周大炮完成签到,获得积分10
3秒前
听闻发布了新的文献求助10
3秒前
陈嘉嘉发布了新的文献求助10
3秒前
拨云见日发布了新的文献求助10
4秒前
英姑应助科研通管家采纳,获得30
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
smottom应助29采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
xiaohe007应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
xiaohe007应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771499
求助须知:如何正确求助?哪些是违规求助? 5591993
关于积分的说明 15427668
捐赠科研通 4904815
什么是DOI,文献DOI怎么找? 2639018
邀请新用户注册赠送积分活动 1586798
关于科研通互助平台的介绍 1541797